A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal Building Management
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
- Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
- Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
- Rubén Pérez-Chacón & José M. Luna-Romera & Alicia Troncoso & Francisco Martínez-Álvarez & José C. Riquelme, 2018. "Big Data Analytics for Discovering Electricity Consumption Patterns in Smart Cities," Energies, MDPI, vol. 11(3), pages 1-19, March.
- Marco Fagiani & Stefano Squartini & Leonardo Gabrielli & Marco Severini & Francesco Piazza, 2016. "A Statistical Framework for Automatic Leakage Detection in Smart Water and Gas Grids," Energies, MDPI, vol. 9(9), pages 1-25, August.
- Seokho Kim & Yujin Song & Yoondong Sung & Donghyun Seo, 2019. "Development of a Consecutive Occupancy Estimation Framework for Improving the Energy Demand Prediction Performance of Building Energy Modeling Tools," Energies, MDPI, vol. 12(3), pages 1-21, January.
- Evelina Di Corso & Tania Cerquitelli & Daniele Apiletti, 2018. "METATECH: METeorological Data Analysis for Thermal Energy CHaracterization by Means of Self-Learning Transparent Models," Energies, MDPI, vol. 11(6), pages 1-24, May.
- Roberto Casado-Vara & Zita Vale & Javier Prieto & Juan M. Corchado, 2018. "Fault-Tolerant Temperature Control Algorithm for IoT Networks in Smart Buildings," Energies, MDPI, vol. 11(12), pages 1-17, December.
- Jinghuan Guo & Yong Mu & Mudi Xiong & Yaqing Liu & Jingxuan Gu, 2019. "Activity Feature Solving Based on TF-IDF for Activity Recognition in Smart Homes," Complexity, Hindawi, vol. 2019, pages 1-10, March.
- Nivine Attoue & Isam Shahrour & Rafic Younes, 2018. "Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature Forecasting," Energies, MDPI, vol. 11(2), pages 1-12, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pedro Macieira & Luis Gomes & Zita Vale, 2021. "Energy Management Model for HVAC Control Supported by Reinforcement Learning," Energies, MDPI, vol. 14(24), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
- Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
- Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
- Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
- Peplinski, McKenna & Dilkina, Bistra & Chen, Mo & Silva, Sam J. & Ban-Weiss, George A. & Sanders, Kelly T., 2024. "A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building characteristics, and socioeconomic datasets," Applied Energy, Elsevier, vol. 357(C).
- Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
- Hu, Yuqing & Cheng, Xiaoyuan & Wang, Suhang & Chen, Jianli & Zhao, Tianxiang & Dai, Enyan, 2022. "Times series forecasting for urban building energy consumption based on graph convolutional network," Applied Energy, Elsevier, vol. 307(C).
- Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
- Yue, Naihua & Caini, Mauro & Li, Lingling & Zhao, Yang & Li, Yu, 2023. "A comparison of six metamodeling techniques applied to multi building performance vectors prediction on gymnasiums under multiple climate conditions," Applied Energy, Elsevier, vol. 332(C).
- Maltais, Louis-Gabriel & Gosselin, Louis, 2022. "Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons," Applied Energy, Elsevier, vol. 307(C).
- Karol Bot & Samira Santos & Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano, 2021. "Design of Ensemble Forecasting Models for Home Energy Management Systems," Energies, MDPI, vol. 14(22), pages 1-37, November.
- Deb, Chirag & Dai, Zhonghao & Schlueter, Arno, 2021. "A machine learning-based framework for cost-optimal building retrofit," Applied Energy, Elsevier, vol. 294(C).
- Majdi Frikha & Khaled Taouil & Ahmed Fakhfakh & Faouzi Derbel, 2024. "Predicting Power Consumption Using Deep Learning with Stationary Wavelet," Forecasting, MDPI, vol. 6(3), pages 1-21, September.
- Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
- Junhwa Hwang & Dongjun Suh & Marc-Oliver Otto, 2020. "Forecasting Electricity Consumption in Commercial Buildings Using a Machine Learning Approach," Energies, MDPI, vol. 13(22), pages 1-29, November.
- Pan, Yue & Zhang, Limao, 2020. "Data-driven estimation of building energy consumption with multi-source heterogeneous data," Applied Energy, Elsevier, vol. 268(C).
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Somu, Nivethitha & Raman M R, Gauthama & Ramamritham, Krithi, 2021. "A deep learning framework for building energy consumption forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
More about this item
Keywords
internet of things; sensor networks; machine learning models; sensor devices; smart buildings; energy efficiency; optimal building management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4745-:d:297314. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.