IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6279-d394356.html
   My bibliography  Save this article

Insulating Organic Material as a Protection System against Late Frost Damages on the Vine Shoots

Author

Listed:
  • Alessia Di Giuseppe

    (CIRIAF, Università degli Studi di Perugia, Via G. Duranti n. 63, 06125 Perugia, Italy)

  • Alberto Maria Gambelli

    (Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti n. 67, 06125 Perugia, Italy)

  • Federico Rossi

    (CIRIAF, Università degli Studi di Perugia, Via G. Duranti n. 63, 06125 Perugia, Italy
    Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti n. 67, 06125 Perugia, Italy)

  • Andrea Nicolini

    (CIRIAF, Università degli Studi di Perugia, Via G. Duranti n. 63, 06125 Perugia, Italy
    Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti n. 67, 06125 Perugia, Italy)

  • Nicola Ceccarelli

    (Dipartimento di Scienze Agrarie Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno n. 74, 06121 Perugia, Italy)

  • Alberto Palliotti

    (Dipartimento di Scienze Agrarie Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno n. 74, 06121 Perugia, Italy)

Abstract

Late frosts are one of the major impact factors on agriculture worldwide with large economic losses for agricultural crops, with a significant impact also in wine production. Given the importance of the wine sector in the world, more and more efforts are being made to identify innovative techniques capable of creating a low-cost and effective protection for vine shoots, as well as reducing energy consumption. In a previous work, cotton candy was identified as an insulating material to solve the problems related to late frosts on vineyards and limit its damages as much as possible. From the results of the previous research, it has proved that cotton candy is an excellent thermal insulator, but it degrades quickly in windy conditions. Thus, climatic tests carried out in windy condition showed that straw can greatly slow down the degradation of cotton candy over time, giving an indirect contribution to the protective effectiveness of cotton candy. In addition, several tests were conducted with different amounts of sugar and straw without wind to evaluate whether the straw can itself make a contribution in terms of thermal insulation, as well as contribute to the protective effectiveness of cotton candy, minimizing energy use as well.

Suggested Citation

  • Alessia Di Giuseppe & Alberto Maria Gambelli & Federico Rossi & Andrea Nicolini & Nicola Ceccarelli & Alberto Palliotti, 2020. "Insulating Organic Material as a Protection System against Late Frost Damages on the Vine Shoots," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6279-:d:394356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maia, Alexandre Gori & Miyamoto, Bruno César Brito & Garcia, Junior Ruiz, 2018. "Climate Change and Agriculture: Do Environmental Preservation and Ecosystem Services Matter?," Ecological Economics, Elsevier, vol. 152(C), pages 27-39.
    2. S. Urhausen & S. Brienen & A. Kapala & C. Simmer, 2011. "Climatic conditions and their impact on viticulture in the Upper Moselle region," Climatic Change, Springer, vol. 109(3), pages 349-373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabiana Frota de Albuquerque Landi & Alessia Di Giuseppe & Alberto Maria Gambelli & Alberto Palliotti & Andrea Nicolini & Anna Laura Pisello & Federico Rossi, 2021. "Life Cycle Assessment of an Innovative Technology against Late Frosts in Vineyard," Sustainability, MDPI, vol. 13(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Santos & S. Grätsch & M. Karremann & G. Jones & J. Pinto, 2013. "Ensemble projections for wine production in the Douro Valley of Portugal," Climatic Change, Springer, vol. 117(1), pages 211-225, March.
    2. Lucas Contarato Pilon & Jordano Vaz Ambus & Elena Blume & Rodrigo Josemar Seminoti Jacques & José Miguel Reichert, 2023. "Citrus Orchards in Agroforestry, Organic, and Conventional Systems: Soil Quality and Functioning," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    3. Gori Maia, Alexandre & Eusebio, Gabriela dos Santos & Fasiaben, Maria do Carmo Ramos & Moraes, Andre Steffens & Assad, Eduardo Delgado & Pugliero, Vanessa Silva, 2021. "The economic impacts of the diffusion of agroforestry in Brazil," Land Use Policy, Elsevier, vol. 108(C).
    4. Koffi M. Adji & Aklesso Y. G. Egbendewe & Boris O. K. Lokonon, 2022. "Potential impacts of sustainable agricultural practices on smallholders' behavior in developing countries: Evidence from Togo," Natural Resources Forum, Blackwell Publishing, vol. 46(1), pages 73-87, February.
    5. Heiko Paeth & Daniel Schönbein & Luzia Keupp & Daniel Abel & Freddy Bangelesa & Miriam Baumann & Christian Büdel & Christian Hartmann & Christof Kneisel & Konstantin Kobs & Julian Krause & Martin Krec, 2023. "Climate change information tailored to the agricultural sector in Central Europe, exemplified on the region of Lower Franconia," Climatic Change, Springer, vol. 176(10), pages 1-24, October.
    6. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    7. Miguel Angel Orduño Torres & Zein Kallas & Selene Ivette Ornelas Herrera & Bouali Guesmi, 2019. "Is Technical Efficiency Affected by Farmers’ Preference for Mitigation and Adaptation Actions against Climate Change? A Case Study in Northwest Mexico," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    8. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    9. Daniel Morales Martínez & Alexandre Gori Maia & Junior Ruiz Garcia, 2022. "Spatial diffusion of efficient irrigation systems: a study of São Paulo, Brazil," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 690-712, July.
    10. Dénis B. Akouwerabou, 2023. "Effect of agricultural extension on cotton farmer's efficiency in arid and semi‐arid areas of Burkina Faso," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 42-59, February.
    11. M. Moriondo & G. Jones & B. Bois & C. Dibari & R. Ferrise & G. Trombi & M. Bindi, 2013. "Projected shifts of wine regions in response to climate change," Climatic Change, Springer, vol. 119(3), pages 825-839, August.
    12. Jean Galbert, ONGONO OLINGA, 2023. "Agricultural Productivity and Climate Change: An Evidence of a non-linear Relationship in Sub-Saharan Africa," MPRA Paper 117669, University Library of Munich, Germany.
    13. Chunhua Tang & Huiyuan Zhang & Jiamuyan Xie, 2022. "Optimal Contract Design in Contract Farming under Asymmetric Effort Information," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    14. Sandra Ricart & Jorge Olcina & Antonio M. Rico, 2018. "Evaluating Public Attitudes and Farmers’ Beliefs towards Climate Change Adaptation: Awareness, Perception, and Populism at European Level," Land, MDPI, vol. 8(1), pages 1-24, December.
    15. Mario Cunha & Christian Richter, 2016. "The impact of climate change on the winegrape vineyards of the Portuguese Douro region," Climatic Change, Springer, vol. 138(1), pages 239-251, September.
    16. Wąs, Adam & Malak-Rawlikowska, Agata & Zavalloni, Matteo & Viaggi, Davide & Kobus, Paweł & Sulewski, Piotr, 2021. "In search of factors determining the participation of farmers in agri-environmental schemes – Does only money matter in Poland?," Land Use Policy, Elsevier, vol. 101(C).
    17. Younes Ben Zaied & Nidhaleddine Ben Cheikh & Mbarek Rahmoun, 2023. "On the effects of climate variability on agricultural crops: evidence from an in-transition economy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(2), pages 143-159, April.
    18. Alicia Ramírez-Orellana & Daniel Ruiz-Palomo & Alfonso Rojo-Ramírez & John E. Burgos-Burgos, 2021. "The Ecuadorian Banana Farms Managers’ Perceptions: Innovation as a Driver of Environmental Sustainability Practices," Agriculture, MDPI, vol. 11(3), pages 1-18, March.
    19. Chandio, Abbas Ali & Dash, Devi Prasad & Nathaniel, Solomon Prince & Sargani, Ghulam Raza & Jiang, Yuansheng, 2023. "Mitigation pathways towards climate change: Modelling the impact of climatological factors on wheat production in top six regions of China," Ecological Modelling, Elsevier, vol. 481(C).
    20. Ashenfelter, Orley & Storchmann, Karl, 2014. "Wine and Climate Change," Working Papers 164854, American Association of Wine Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6279-:d:394356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.