IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p147-d301243.html
   My bibliography  Save this article

Recoverability Analysis of Critical Materials from Electric Vehicle Lithium-Ion Batteries through a Dynamic Fleet-Based Approach for Japan

Author

Listed:
  • Fernando Enzo Kenta Sato

    (Cyclical Resource Promotion Division, Honda Motor Co., Ltd., Wako 351-0114, Japan
    Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan)

  • Toshihiko Nakata

    (Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan)

Abstract

This study aims to propose a model to forecast the volume of critical materials that can be recovered from lithium-ion batteries (LiB) through the recycling of end of life electric vehicles (EV). To achieve an environmentally sustainable society, the wide-scale adoption of EV seems to be necessary. Here, the dependency of the vehicle on its batteries has an essential role. The efficient recycling of LiB to minimize its raw material supply risk but also the economic impact of its production process is going to be essential. Initially, this study forecasted the vehicle fleet, sales, and end of life vehicles based on system dynamics modeling considering data of scrapping rates of vehicles by year of life. Then, the volumes of the critical materials supplied for LiB production and recovered from recycling were identified, considering variations in the size/type of batteries. Finally, current limitations to achieve closed-loop production in Japan were identified. The results indicate that the amount of scrapped electric vehicle batteries (EVB) will increase by 55 times from 2018 to 2050, and that 34% of lithium (Li), 50% of cobalt (Co), 28% of nickel (Ni), and 52% of manganese (Mn) required for the production of new LiB could be supplied by recovered EVB in 2035.

Suggested Citation

  • Fernando Enzo Kenta Sato & Toshihiko Nakata, 2019. "Recoverability Analysis of Critical Materials from Electric Vehicle Lithium-Ion Batteries through a Dynamic Fleet-Based Approach for Japan," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:147-:d:301243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    2. Sato, Fernando Enzo Kenta & Furubayashi, Takaaki & Nakata, Toshihiko, 2019. "Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan," Applied Energy, Elsevier, vol. 237(C), pages 779-794.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Raka Jovanovic & Islam Safak Bayram & Sertac Bayhan & Stefan Voß, 2021. "A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems," Energies, MDPI, vol. 14(20), pages 1-23, October.
    3. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    4. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    5. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    6. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    7. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Zambri Harun & Altaf Hossain Molla & Mohd Radzi Abu Mansor & Rozmi Ismail, 2022. "Development, Critical Evaluation, and Proposed Framework: End-of-Life Vehicle Recycling in India," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    9. Viana-Fons, Joan Dídac & Payá, Jorge, 2024. "HVAC system operation, consumption and compressor size optimization in urban buses of Mediterranean cities," Energy, Elsevier, vol. 296(C).
    10. Ziyad Tariq Abdullah, 2021. "Remanufacturing end-of-life passenger car waste sheet steel into mesh sheet: A sustainability assessment," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-18, October.
    11. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    12. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    13. Fernando Enzo Kenta Sato & Toshihiko Nakata, 2020. "Energy Consumption Analysis for Vehicle Production through a Material Flow Approach," Energies, MDPI, vol. 13(9), pages 1-18, May.
    14. John P. Barton & Murray Thomson, 2021. "Solar Power and Energy Storage for Decarbonization of Land Transport in India," Energies, MDPI, vol. 14(24), pages 1-24, December.
    15. Dinesh Kumar Madheswaran & Mohanraj Thangamuthu & Sakthivel Gnanasekaran & Suresh Gopi & Tamilvanan Ayyasamy & Sujit S. Pardeshi, 2023. "Powering the Future: Progress and Hurdles in Developing Proton Exchange Membrane Fuel Cell Components to Achieve Department of Energy Goals—A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-24, November.
    16. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    17. Bruno Dalla Chiara & Giovanni Pede & Francesco Deflorio & Marco Zanini, 2023. "Electrifying Buses for Public Transport: Boundaries with a Performance Analysis Based on Method and Experience," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    18. Edwin R. Grijalva & José María López Martínez, 2019. "Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study," Energies, MDPI, vol. 12(3), pages 1-31, February.
    19. Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    20. Wang, Hongfei & Guan, Hongzhi & Qin, Huanmei & Zhao, Pengfei, 2024. "Assessing the sustainability of time-dependent electric demand responsive transit service through deep reinforcement learning," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:147-:d:301243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.