IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p137-d301164.html
   My bibliography  Save this article

Risk Analysis of Chemical Plant Explosion Accidents Based on Bayesian Network

Author

Listed:
  • Rongchen Zhu

    (School of Information Technology and Network Security, People’s Public Security University of China, Beijing 102628, China)

  • Xin Li

    (School of Information Technology and Network Security, People’s Public Security University of China, Beijing 102628, China)

  • Xiaofeng Hu

    (School of Information Technology and Network Security, People’s Public Security University of China, Beijing 102628, China)

  • Deshui Hu

    (School of Information Technology and Network Security, People’s Public Security University of China, Beijing 102628, China)

Abstract

Many chemical plant explosion accidents occur along with the development of the chemical industry. Meanwhile, the interaction and influence of various factors significantly increase the uncertainty of the evolution process of such accidents. This paper presents a framework to dynamically evaluate chemical plant explosion accidents. We propose twelve nodes to represent accident evolution and establish a Bayesian network model for chemical plant explosion accidents, combining historical data with expert experience to support the prevention, management, and real-time warning. Hypothetical scenarios and catastrophic explosion scenarios were analyzed by setting different combinations of states for nodes. Moreover, the impacts of factors such as factory type, material form, accident equipment, the emergency response on casualty and property loss are evaluated. We find that sensitivity of property loss and casualties to factory type and ongoing work are less significant; the equipment factors result in more casualties than that from personnel factors; the impact of emergency response on the accident results is significant; equipment safety management and personnel safety training are the most important measures to prevent chemical plant explosion risks.

Suggested Citation

  • Rongchen Zhu & Xin Li & Xiaofeng Hu & Deshui Hu, 2019. "Risk Analysis of Chemical Plant Explosion Accidents Based on Bayesian Network," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:137-:d:301164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nadkarni, Sucheta & Shenoy, Prakash P., 2001. "A Bayesian network approach to making inferences in causal maps," European Journal of Operational Research, Elsevier, vol. 128(3), pages 479-498, February.
    2. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    3. Zhi Yuan & Nima Khakzad & Faisal Khan & Paul Amyotte, 2015. "Risk Analysis of Dust Explosion Scenarios Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 278-291, February.
    4. Zhujie Chu & Wenna Wang & Bairong Wang & Jun Zhuang, 2016. "Research on Factors Influencing Municipal Household Solid Waste Separate Collection: Bayesian Belief Networks," Sustainability, MDPI, vol. 8(2), pages 1-14, February.
    5. Foroogh Ghasemi & Mohammad Hossein Mahmoudi Sari & Vahidreza Yousefi & Reza Falsafi & Jolanta Tamošaitienė, 2018. "Project Portfolio Risk Identification and Analysis, Considering Project Risk Interactions and Using Bayesian Networks," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    6. Jiansong Wu & Zhuqiang Hu & Jinyue Chen & Zheng Li, 2018. "Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    7. Francis, Royce A. & Guikema, Seth D. & Henneman, Lucas, 2014. "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 1-11.
    8. Keeeun Lee & Inchae Park & Byungun Yoon, 2016. "An Approach for R&D Partner Selection in Alliances between Large Companies, and Small and Medium Enterprises (SMEs): Application of Bayesian Network and Patent Analysis," Sustainability, MDPI, vol. 8(2), pages 1-18, January.
    9. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    10. Bañuls, Victor A. & Turoff, Murray & Hiltz, Starr Roxanne, 2013. "Collaborative scenario modeling in emergency management through cross-impact," Technological Forecasting and Social Change, Elsevier, vol. 80(9), pages 1756-1774.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongchen Zhu & Xiaofeng Hu & Xin Li & Han Ye & Nan Jia, 2020. "Modeling and Risk Analysis of Chemical Terrorist Attacks: A Bayesian Network Method," IJERPH, MDPI, vol. 17(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiansong Wu & Zhuqiang Hu & Jinyue Chen & Zheng Li, 2018. "Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    2. Xiao Zhang & Xiaofeng Hu & Yiping Bai & Jiansong Wu, 2020. "Risk Assessment of Gas Leakage from School Laboratories Based on the Bayesian Network," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    3. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    4. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Haifeng Bian & Jun Zhang & Ruixue Li & Huanhuan Zhao & Xuexue Wang & Yiping Bai, 2021. "Risk analysis of tripping accidents of power grid caused by typical natural hazards based on FTA-BN model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1771-1795, April.
    6. Massimo FLORIO & Aleksandra PARTEKA & Emanuela SIRTORI, 2016. "The Role of EU Policy in Supporting Technological Innovation in SMEs - a Bayesian Network Analysis of Firm-Level Data from Poland," Departmental Working Papers 2016-13, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    7. Lina Han & Qing Ma & Feng Zhang & Yichen Zhang & Jiquan Zhang & Yongbin Bao & Jing Zhao, 2019. "Risk Assessment of An Earthquake-Collapse-Landslide Disaster Chain by Bayesian Network and Newmark Models," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    8. Yu, Jin-Zhu & Whitman, Mackenzie & Kermanshah, Amirhassan & Baroud, Hiba, 2021. "A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: A case study of water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Zheng, Xiaohu & Yao, Wen & Xu, Yingchun & Chen, Xianqi, 2019. "Improved compression inference algorithm for reliability analysis of complex multistate satellite system based on multilevel Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 123-142.
    10. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    11. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    12. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Turoff, Murray & Hiltz, Starr Roxanne & Bañuls, Víctor A. & Van Den Eede, Gerd, 2013. "Multiple perspectives on planning for emergencies: An introduction to the special issue on planning and foresight for emergency preparedness and management," Technological Forecasting and Social Change, Elsevier, vol. 80(9), pages 1647-1656.
    14. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    15. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    16. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    17. Margherita, Alessandro & Elia, Gianluca & Klein, Mark, 2021. "Managing the COVID-19 emergency: A coordination framework to enhance response practices and actions," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    18. Barnes, Stuart J. & Mattsson, Jan, 2016. "Understanding current and future issues in collaborative consumption: A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 200-211.
    19. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    20. Ülengin, Füsun & Önsel, Sule & Ilker Topçu, Y. & Aktas, Emel & Kabak, Özgür, 2007. "An integrated transportation decision support system for transportation policy decisions: The case of Turkey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 80-97, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:137-:d:301164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.