IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p924-d205001.html
   My bibliography  Save this article

Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies

Author

Listed:
  • Xiaoxia Gao

    (Department of Power Engineering, North China Electric Power University (Baoding), Beijing 071000, China
    Renewable Energy Research Group (RERG), Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Lu Xia

    (Department of Power Engineering, North China Electric Power University (Baoding), Beijing 071000, China)

  • Lin Lu

    (Renewable Energy Research Group (RERG), Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Yonghua Li

    (Department of Power Engineering, North China Electric Power University (Baoding), Beijing 071000, China)

Abstract

The wind energy utilization in Hong Kong is limited, although its potential has proven to be significant. The lack of effective policy for wind energy development is the main constraint. In this paper, the wind power potential in Hong Kong is analyzed, and the wind power potential assessment is conducted based on one-year field measured wind data using Light Detection & Ranging (LiDAR) technology in a proposed offshore wind farm. Results show that the offshore wind power potential in Hong Kong was 14,449 GWh which occupied 32.20% of electricity consumption in 2017. In addition, the electricity market and power structure in Hong Kong are also reviewed with the existing policies related to renewable energy development. Conclusions can be made that the renewable energy target in Hong Kong is out of date and until now there have been no specific effective policies on wind energy. In order to urge Hong Kong, catch up with other countries/regions on wind energy development, the histories and evolution of wind energy policies in other countries, especially in Denmark, are reviewed and discussed. Suggestions are provided in the aspects of economics, public attitude, and political factors which can stimulate wind power development in Hong Kong.

Suggested Citation

  • Xiaoxia Gao & Lu Xia & Lin Lu & Yonghua Li, 2019. "Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:924-:d:205001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Jobert, Arthur & Laborgne, Pia & Mimler, Solveig, 2007. "Local acceptance of wind energy: Factors of success identified in French and German case studies," Energy Policy, Elsevier, vol. 35(5), pages 2751-2760, May.
    3. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    4. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 178-184.
    5. Shrimali, Gireesh & Lynes, Melissa & Indvik, Joe, 2015. "Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 796-806.
    6. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    7. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    8. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    9. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    10. Skiba, Marta & Mrówczyńska, Maria & Bazan-Krzywoszańska, Anna, 2017. "Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra," Applied Energy, Elsevier, vol. 188(C), pages 356-366.
    11. Chang, Tsang-Jung & Tu, Yi-Long, 2007. "Evaluation of monthly capacity factor of WECS using chronological and probabilistic wind speed data: A case study of Taiwan," Renewable Energy, Elsevier, vol. 32(12), pages 1999-2010.
    12. Gökçek, Murat & Genç, Mustafa Serdar, 2009. "Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey," Applied Energy, Elsevier, vol. 86(12), pages 2731-2739, December.
    13. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    14. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    15. Albert Parker, 2015. "Renewable Energy Target for Australia – The Role of Fuel Conversion Efficiency and Waste Biomass Valorisation," Energy & Environment, , vol. 26(5), pages 847-851, September.
    16. Hirsh, Richard F., 1999. "PURPA: The Spur to Competition and Utility Restructuring," The Electricity Journal, Elsevier, vol. 12(7), pages 60-72, August.
    17. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2007. "Techno-economics of small wind electric generator projects for decentralized power supply in India," Energy Policy, Elsevier, vol. 35(4), pages 2491-2506, April.
    18. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
    19. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    20. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    21. Ahmed Shata, A.S. & Hanitsch, R., 2006. "Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt," Renewable Energy, Elsevier, vol. 31(8), pages 1183-1202.
    22. Charles Warren & Carolyn Lumsden & Simone O'Dowd & Richard Birnie, 2005. "'Green On Green': Public perceptions of wind power in Scotland and Ireland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 48(6), pages 853-875.
    23. Wong, L.T. & Mui, K.W., 2009. "Efficiency assessment of indoor environmental policy for air-conditioned offices in Hong Kong," Applied Energy, Elsevier, vol. 86(10), pages 1933-1938, October.
    24. Lee, W. L. & Yik, F. W. H., 2002. "Framework for formulating a performance-based incentive-rebate scale for the demand-side-energy management scheme for commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 73(2), pages 139-166, October.
    25. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.
    26. Ucar, Aynur & Balo, Figen, 2009. "Evaluation of wind energy potential and electricity generation at six locations in Turkey," Applied Energy, Elsevier, vol. 86(10), pages 1864-1872, October.
    27. Mundaca, Luis & Markandya, Anil, 2016. "Assessing regional progress towards a ‘Green Energy Economy’," Applied Energy, Elsevier, vol. 179(C), pages 1372-1394.
    28. Nordensvärd, Johan & Urban, Frauke, 2015. "The stuttering energy transition in Germany: Wind energy policy and feed-in tariff lock-in," Energy Policy, Elsevier, vol. 82(C), pages 156-165.
    29. Zhang, Xiaoling & Shen, Liyin & Chan, Sum Yee, 2012. "The diffusion of solar energy use in HK: What are the barriers?," Energy Policy, Elsevier, vol. 41(C), pages 241-249.
    30. Genç, Mustafa Serdar & Çelik, Muhammet & Karasu, İlyas, 2012. "A review on wind energy and wind–hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6631-6646.
    31. Berry, Trent & Jaccard, Mark, 2001. "The renewable portfolio standard:: design considerations and an implementation survey," Energy Policy, Elsevier, vol. 29(4), pages 263-277, March.
    32. Li, G, 2000. "Feasibility of large scale offshore wind power for Hong Kong — a preliminary study," Renewable Energy, Elsevier, vol. 21(3), pages 387-402.
    33. García-Gusano, Diego & Iribarren, Diego & Garraín, Daniel, 2017. "Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers," Applied Energy, Elsevier, vol. 190(C), pages 891-901.
    34. Kaplan, Yusuf Alper, 2015. "Overview of wind energy in the world and assessment of current wind energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 562-568.
    35. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    36. Yixin Dai & Lan Xue, 2015. "China's policy initiatives for the development of wind energy technology," Climate Policy, Taylor & Francis Journals, vol. 15(1), pages 30-57, January.
    37. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    38. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    39. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    40. Lu, Lin & Ip, Ka Yan, 2009. "Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 450-461, February.
    41. Lu, Lin & Yang, Hongxing & Burnett, John, 2002. "Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics," Renewable Energy, Elsevier, vol. 27(1), pages 1-12.
    42. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    43. Garud, Raghu & Karnoe, Peter, 2003. "Bricolage versus breakthrough: distributed and embedded agency in technology entrepreneurship," Research Policy, Elsevier, vol. 32(2), pages 277-300, February.
    44. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    45. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    46. Toke, David & Breukers, Sylvia & Wolsink, Maarten, 2008. "Wind power deployment outcomes: How can we account for the differences?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1129-1147, May.
    47. Lam, Tony N.T. & Wan, Kevin K.W. & Wong, S.L. & Lam, Joseph C., 2010. "Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(7), pages 2321-2327, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A.H.T. Shyam Kularathna & Sayaka Suda & Ken Takagi & Shigeru Tabeta, 2019. "Evaluation of Co-Existence Options of Marine Renewable Energy Projects in Japan," Sustainability, MDPI, vol. 11(10), pages 1-26, May.
    2. Wei Li & Shinai Xu & Baiyun Qian & Xiaoxia Gao & Xiaoxun Zhu & Zeqi Shi & Wei Liu & Qiaoliang Hu, 2022. "Large-Scale Wind Turbine’s Load Characteristics Excited by the Wind and Grid in Complex Terrain: A Review," Sustainability, MDPI, vol. 14(24), pages 1-29, December.
    3. Alex W. J. Cheng & Harry F. Lee, 2022. "Energy Transition towards Sustainable Development: Perspective of Individuals’ Engagement Amid Transition Process," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    4. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    5. Gebreslassie, Mulualem G., 2020. "Public perception and policy implications towards the development of new wind farms in Ethiopia," Energy Policy, Elsevier, vol. 139(C).
    6. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    2. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    3. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    4. Pérez de Arce, Miguel & Sauma, Enzo & Contreras, Javier, 2016. "Renewable energy policy performance in reducing CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 272-280.
    5. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    6. Anshelm, Jonas & Simon, Haikola, 2016. "Power production and environmental opinions – Environmentally motivated resistance to wind power in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1545-1555.
    7. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    8. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    9. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
    10. Miguel Pérez de Arce and Enzo Sauma, 2016. "Comparison of Incentive Policies for Renewable Energy in an Oligopolistic Market with Price-Responsive Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    11. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    12. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    13. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    14. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    15. Walker, S.L., 2012. "Can the GB feed-in tariff deliver the expected 2% of electricity from renewable sources?," Renewable Energy, Elsevier, vol. 43(C), pages 383-388.
    16. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    17. van Rensburg, Thomas M. & Kelley, Hugh & Jeserich, Nadine, 2015. "What influences the probability of wind farm planning approval: Evidence from Ireland," Ecological Economics, Elsevier, vol. 111(C), pages 12-22.
    18. Romano, Antonio A. & Scandurra, Giuseppe & Carfora, Alfonso & Fodor, Mate, 2017. "Renewable investments: The impact of green policies in developing and developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 738-747.
    19. Lüthi, Sonja & Wüstenhagen, Rolf, 2012. "The price of policy risk — Empirical insights from choice experiments with European photovoltaic project developers," Energy Economics, Elsevier, vol. 34(4), pages 1001-1011.
    20. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:924-:d:205001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.