IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p706-d201760.html
   My bibliography  Save this article

Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China

Author

Listed:
  • Xinbing Wang

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 10093, China)

  • Yuxin Miao

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 10093, China
    Precision Agriculture Center, Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN 55108, USA)

  • Rui Dong

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 10093, China)

  • Zhichao Chen

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Yanjie Guan

    (College of Resources and Environmental Sciences, China Agricultural University, Beijing 10093, China)

  • Xuezhi Yue

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Zheng Fang

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • David J. Mulla

    (Precision Agriculture Center, Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN 55108, USA)

Abstract

Precision nitrogen (N) management (PNM) strategies are urgently needed for the sustainability of rain-fed maize ( Zea mays L.) production in Northeast China. The objective of this study was to develop an active canopy sensor (ACS)-based PNM strategy for rain-fed maize through improving in-season prediction of yield potential (YP 0 ), response index to side-dress N based on harvested yield (RI Harvest ), and side-dress N agronomic efficiency (AE NS ). Field experiments involving six N rate treatments and three planting densities were conducted in three growing seasons (2015–2017) in two different soil types. A hand-held GreenSeeker sensor was used at V8-9 growth stage to collect normalized difference vegetation index (NDVI) and ratio vegetation index (RVI). The results indicated that NDVI or RVI combined with relative plant height (NDVI*RH or RVI*RH) were more strongly related to YP 0 (R 2 = 0.44–0.78) than only using NDVI or RVI (R 2 = 0.26–0.68). The improved N fertilizer optimization algorithm (INFOA) using in-season predicted AE NS optimized N rates better than the N fertilizer optimization algorithm (NFOA) using average constant AE NS . The INFOA-based PNM strategies could increase marginal returns by 212 $ ha −1 and 70 $ ha −1 , reduce N surplus by 65% and 62%, and improve N use efficiency (NUE) by 4%–40% and 11%–65% compared with farmer’s typical N management in the black and aeolian sandy soils, respectively. It is concluded that the ACS-based PNM strategies have the potential to significantly improve profitability and sustainability of maize production in Northeast China. More studies are needed to further improve N management strategies using more advanced sensing technologies and incorporating weather and soil information.

Suggested Citation

  • Xinbing Wang & Yuxin Miao & Rui Dong & Zhichao Chen & Yanjie Guan & Xuezhi Yue & Zheng Fang & David J. Mulla, 2019. "Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:706-:d:201760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/706/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/706/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Dongxiao & Liu, Huiling & Qiao, Yunzhou & Wang, Youning & Cai, Zhaoming & Dong, Baodi & Shi, Changhai & Liu, Yueyan & Li, Xia & Liu, Mengyu, 2013. "Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress," Agricultural Water Management, Elsevier, vol. 129(C), pages 105-112.
    2. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    3. Wu, Dali & Xu, Xinxing & Chen, Yanling & Shao, Hui & Sokolowski, Eldad & Mi, Guohua, 2019. "Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China," Agricultural Water Management, Elsevier, vol. 213(C), pages 200-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guopeng Jiang & Miles Grafton & Diane Pearson & Mike Bretherton & Allister Holmes, 2019. "Integration of Precision Farming Data and Spatial Statistical Modelling to Interpret Field-Scale Maize Productivity," Agriculture, MDPI, vol. 9(11), pages 1-22, November.
    2. Zhao, Jin & Yang, Xiaoguang & Liu, Zhijuan & Pullens, Johannes W.M. & Chen, Ji & Marek, Gary W. & Chen, Yong & Lv, Shuo & Sun, Shuang, 2020. "Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China," Agricultural Water Management, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    3. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    4. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    5. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    6. Jiamin Liu & Xiaoyu Ma & Bin Zhao & Qi Cui & Sisi Zhang & Jiaoning Zhang, 2023. "Mandatory Environmental Regulation, Enterprise Labor Demand and Green Innovation Transformation: A Quasi-Experiment from China’s New Environmental Protection Law," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    7. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    8. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    9. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    10. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    11. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    12. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    14. Li, Haoru & Li, Xiaoli & Mei, Xurong & Nangia, Vinay & Guo, Rui & Hao, Weiping & Wang, Jiandong, 2023. "An alternative water-fertilizer-saving management practice for wheat-maize cropping system in the North China Plain: Based on a 4-year field study," Agricultural Water Management, Elsevier, vol. 276(C).
    15. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    16. Wang, Mengru & Ma, Lin & Strokal, Maryna & Chu, Yanan & Kroeze, Carolien, 2018. "Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China," Agricultural Systems, Elsevier, vol. 163(C), pages 58-72.
    17. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    19. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    20. Maity, Shrabanti & Sinha, Anup & Kumar Rath, Mithun & Rummana Barlaskar, Ummey, 2023. "Resource Use Efficiency and Cleaner Agricultural Production: An Application of Technical Inefficiency Effects Model for Paddy Producing Zones of West Bengal," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(2), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:706-:d:201760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.