IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v232y2020ics037837741931892x.html
   My bibliography  Save this article

Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China

Author

Listed:
  • Zhao, Jin
  • Yang, Xiaoguang
  • Liu, Zhijuan
  • Pullens, Johannes W.M.
  • Chen, Ji
  • Marek, Gary W.
  • Chen, Yong
  • Lv, Shuo
  • Sun, Shuang

Abstract

Maize (Zea mays L.) is an important cereal crop grown worldwide. With the increase in human food demand but limited land and water resources, precise spatially explicit knowledge about the maize production capacity through agricultural management practices (e.g., using recommended nutrient and water inputs, RNWI, by local agronomists) is essential to guide the future policy, research, development, and investment. Here, we used a well-validated crop model (APSIM-Maize) for 1981–2010 combined with actual climatic and soil data to estimate maize yield improvements under RNWI in three main cropping regions in China (the North China Spring Maize Region, NCS; the Huanghuaihai Summer Maize region, HS; and the Southwest China Mountain Maize Region, SCM). Compared with the county-level maize actual yield in the three main cropping regions, the average maize yield could be increased by 33 % (4 Mg ha−1) through RNWI, while the improvements in the coefficients of variation (CVs) of grain yield and reliable grain production (RGP) were 0.11 and 32 % (69 million Mg), respectively. Except for RNWI, the average yield, CVs of yield, and RGP could still be increased by 28 % (3 Mg ha−1), 0.10, and 36 % (80 million Mg) through other management and technologies (OMT). Further analysis in four types of yield level-stability zones (high-stable, low-stable, high-unstable, and low-unstable zones) showed that greater contributions of using RNWI and OMT to improve maize grain yield, yield stability, and RGP were found in zones with low/unstable yield across the three regions. The findings highlighted the focus on increasing maize yield in low/unstable-yield zones could provide a greater return.

Suggested Citation

  • Zhao, Jin & Yang, Xiaoguang & Liu, Zhijuan & Pullens, Johannes W.M. & Chen, Ji & Marek, Gary W. & Chen, Yong & Lv, Shuo & Sun, Shuang, 2020. "Greater maize yield improvements in low/unstable yield zones through recommended nutrient and water inputs in the main cropping regions, China," Agricultural Water Management, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:agiwat:v:232:y:2020:i:c:s037837741931892x
    DOI: 10.1016/j.agwat.2020.106018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741931892X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiang & Takahashi, Taro & Suzuki, Nobuhiro & Kaiser, Harry M., 2011. "The impact of climate change on maize yields in the United States and China," Agricultural Systems, Elsevier, vol. 104(4), pages 348-353, April.
    2. Gillian Rose & Tom Osborne & Helen Greatrex & Tim Wheeler, 2016. "Impact of progressive global warming on the global-scale yield of maize and soybean," Climatic Change, Springer, vol. 134(3), pages 417-428, February.
    3. Gillian Rose & Tom Osborne & Helen Greatrex & Tim Wheeler, 2016. "Impact of progressive global warming on the global-scale yield of maize and soybean," Climatic Change, Springer, vol. 134(3), pages 417-428, February.
    4. A. J. Challinor & A.-K. Koehler & J. Ramirez-Villegas & S. Whitfield & B. Das, 2016. "Current warming will reduce yields unless maize breeding and seed systems adapt immediately," Nature Climate Change, Nature, vol. 6(10), pages 954-958, October.
    5. Xinbing Wang & Yuxin Miao & Rui Dong & Zhichao Chen & Yanjie Guan & Xuezhi Yue & Zheng Fang & David J. Mulla, 2019. "Developing Active Canopy Sensor-Based Precision Nitrogen Management Strategies for Maize in Northeast China," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariola Staniak & Ewa Szpunar-Krok & Anna Kocira, 2023. "Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water," Agriculture, MDPI, vol. 13(1), pages 1-28, January.
    2. Muhammad Ahtasham Mushtaq & Hafiz Ghulam Muhu-Din Ahmed & Yawen Zeng, 2024. "Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security," Sustainability, MDPI, vol. 16(13), pages 1-24, July.
    3. Yuki Ishikawa Ishiwata & Jun Furuya, 2020. "Evaluating the Contribution of Soybean Rust- Resistant Cultivars to Soybean Production and the Soybean Market in Brazil: A Supply and Demand Model Analysis," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    4. Huizhao Yang & Sailesh Ranjitkar & Wenxuan Xu & Lei Han & Jianbo Yang & Liqing Wu & Jianchu Xu, 2021. "Crop-climate model in support of adjusting local ecological calendar in the Taxkorgan, eastern Pamir Plateau," Climatic Change, Springer, vol. 167(3), pages 1-19, August.
    5. Wenjin Hu & Xinli Pan & Fengfeng Li & Wubei Dong, 2018. "UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-17, February.
    6. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    7. Assa, Maganga Mulagha & Gebremariam, Gebrelibanos G. & Mapemba, Lawrence D., 2013. "A cross-region study: climate change adaptation in Malawi's agro-based systems," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161304, African Association of Agricultural Economists (AAAE).
    8. Shimelis Araya Geda & Rainer Kühl, 2021. "Exploring Smallholder Farmers’ Preferences for Climate-Smart Seed Innovations: Empirical Evidence from Southern Ethiopia," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    9. Chauhdary, Junaid Nawaz & Li, Hong & Akbar, Nadeem & Javaid, Maria & Rizwan, Muhammad & Akhlaq, Muhammad, 2024. "Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios," Agricultural Water Management, Elsevier, vol. 293(C).
    10. Blanca Isabel Sánchez-Toledano & Zein Kallas & Oscar Palmeros Rojas & José M. Gil, 2018. "Determinant Factors of the Adoption of Improved Maize Seeds in Southern Mexico: A Survival Analysis Approach," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    11. Dazhuan Ge & Hualou Long & Li Ma & Yingnan Zhang & Shuangshuang Tu, 2017. "Analysis Framework of China’s Grain Production System: A Spatial Resilience Perspective," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    12. Bhattarai, Mukesh Dev & Secchi, Silvia & Schoof, Justin, 2017. "Projecting corn and soybeans yields under climate change in a Corn Belt watershed," Agricultural Systems, Elsevier, vol. 152(C), pages 90-99.
    13. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    14. Trumbo, Jennifer L. & Tonn, Bruce E., 2016. "Biofuels: A sustainable choice for the United States' energy future?," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 147-161.
    15. Guopeng Jiang & Miles Grafton & Diane Pearson & Mike Bretherton & Allister Holmes, 2019. "Integration of Precision Farming Data and Spatial Statistical Modelling to Interpret Field-Scale Maize Productivity," Agriculture, MDPI, vol. 9(11), pages 1-22, November.
    16. Ma Jiliang Jiliang & Jean-Francois Maystadt, 2016. "Weather shocks, maize yields and adaptation in rural China," Working Papers 104825642, Lancaster University Management School, Economics Department.
    17. Shuangshuang Wang & Wenqiang Xie & Xiaodong Yan, 2022. "Effects of Future Climate Change on Citrus Quality and Yield in China," Sustainability, MDPI, vol. 14(15), pages 1-18, July.
    18. Jiansheng Ye & Changan Liu, 2012. "Suitability of Mulch and Ridge-furrow Techniques for Maize across the Precipitation Gradient on the Chinese Loess Plateau," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(10), pages 182-182, August.
    19. Zhi-Zheng Wang & Min-Jie Cao & Junjie Yan & Jin Dong & Mo-Xian Chen & Jing-Fang Yang & Jian-Hong Li & Rui-Ning Ying & Yang-Yang Gao & Li Li & Ya-Nan Leng & Yuan Tian & Kamalani Achala H. Hewage & Rong, 2024. "Stabilization of dimeric PYR/PYL/RCAR family members relieves abscisic acid-induced inhibition of seed germination," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Wenqiang Xie & Xiaodong Yan, 2023. "Responses of Wheat Protein Content and Protein Yield to Future Climate Change in China during 2041–2060," Sustainability, MDPI, vol. 15(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:232:y:2020:i:c:s037837741931892x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.