IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6904-d294184.html
   My bibliography  Save this article

Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System

Author

Listed:
  • Sandro Andrés

    (Department of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • David Santillán

    (Department of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Juan Carlos Mosquera

    (Department of Continuum Mechanics and Theory of Structures, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Luis Cueto-Felgueroso

    (Department of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

Abstract

Geothermal energy has emerged as an alternative to ensure a green energy supply while tackling climate change. Geothermal systems extract the heat stored in the Earth’s crust by warming up water, but the low rock permeability at exploitation depths may require the hydraulic stimulation of the rock fracture network. Enhanced Geothermal Systems (EGS) employ techniques such as hydro-shearing and hydro-fracturing for that purpose, but their use promotes anthropogenic earthquakes induced by the injection or extraction of fluids. This work addresses this problem through developing a computational 3D model to explore fault reactivation and evaluating the potential for earthquake triggering at preexisting geological faults. These are included in the model as frictional contacts that allow the relative displacement between both of its sides, governed by rate-and-state friction laws and fully coupled with thermo-hydro-mechanical equations. We apply our methodology to the Basel project, employing the on-site parameters and conditions. Our results demonstrate that earthquakes which occurred in December 2006 in Basel (Switzerland) are compatible with the geomechanical and frictional consequences of the hydraulic stimulation of the rock mass. The application of our model also shows that it can be useful for predicting fault reactivation and engineering injection protocols for managing the safe and sustainable operation of EGS.

Suggested Citation

  • Sandro Andrés & David Santillán & Juan Carlos Mosquera & Luis Cueto-Felgueroso, 2019. "Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6904-:d:294184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6904/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6904/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaucher, Emmanuel & Schoenball, Martin & Heidbach, Oliver & Zang, Arno & Fokker, Peter A. & van Wees, Jan-Diederik & Kohl, Thomas, 2015. "Induced seismicity in geothermal reservoirs: A review of forecasting approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1473-1490.
    2. Christopher H. Scholz, 1998. "Earthquakes and friction laws," Nature, Nature, vol. 391(6662), pages 37-42, January.
    3. Kazemi, A.R. & Mahbaz, S.B. & Dehghani-Sanij, A.R. & Dusseault, M.B. & Fraser, R., 2019. "Performance Evaluation of an Enhanced Geothermal System in the Western Canada Sedimentary Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Mignan, A. & Karvounis, D. & Broccardo, M. & Wiemer, S. & Giardini, D., 2019. "Including seismic risk mitigation measures into the Levelized Cost Of Electricity in enhanced geothermal systems for optimal siting," Applied Energy, Elsevier, vol. 238(C), pages 831-850.
    5. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quanjie Zhu & Longkun Sui & Qingsong Li & Yage Li & Lei Gu & Dacang Wang, 2023. "The Single-Channel Microseismic Mine Signal Denoising Method and Application Based on Frequency Domain Singular Value Decomposition (FSVD)," Sustainability, MDPI, vol. 15(13), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Soltani, M. & Moradi Kashkooli, Farshad & Alian Fini, Mehdi & Gharapetian, Derrick & Nathwani, Jatin & Dusseault, Maurice B., 2022. "A review of nanotechnology fluid applications in geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Temiz, Mert & Dincer, Ibrahim, 2022. "A unique ocean and solar based multigenerational system with hydrogen production and thermal energy storage for Arctic communities," Energy, Elsevier, vol. 239(PB).
    4. Hongyu Sun & Matej Pec, 2021. "Nanometric flow and earthquake instability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Kang, Fangchao & Jia, Tianrang & Li, Yingchun & Deng, Jianhui & Tang, Chun'an & Huang, Xin, 2021. "Experimental study on the physical and mechanical variations of hot granite under different cooling treatments," Renewable Energy, Elsevier, vol. 179(C), pages 1316-1328.
    6. Elisenda Bakker & John Kaszuba & Sabine den Hartog & Suzanne Hangx, 2019. "Chemo‐mechanical behavior of clay‐rich fault gouges affected by CO2‐brine‐rock interactions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 19-36, February.
    7. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Stuart Fraser & William Power & Xiaoming Wang & Laura Wallace & Christof Mueller & David Johnston, 2014. "Tsunami inundation in Napier, New Zealand, due to local earthquake sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 415-445, January.
    9. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2023. "Stochastic performance assessment on long-term behavior of multilateral closed deep geothermal systems," Renewable Energy, Elsevier, vol. 208(C), pages 26-35.
    10. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    11. Moore, Kayla R. & Holländer, Hartmut M., 2020. "Feasibility of low-temperature geothermal systems: Considerations of thermal anomalies, geochemistry, and local assets," Applied Energy, Elsevier, vol. 275(C).
    12. Elżbieta Węglińska & Andrzej Leśniak, 2021. "Induced Seismicity and Detailed Fracture Mapping as Tools for Evaluating HDR Reservoir Volume," Energies, MDPI, vol. 14(9), pages 1-17, May.
    13. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, vol. 13(14), pages 1-29, July.
    14. Arnaud Mignan & Marco Broccardo & Ziqi Wang, 2021. "Comprehensive Survey of Seismic Hazard at Geothermal Sites by a Meta-Analysis of the Underground Feedback Activation Parameter a fb," Energies, MDPI, vol. 14(23), pages 1-15, November.
    15. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    16. Nkomom, Théodule Nkoa & Okaly, Joseph Brizar & Mvogo, Alain, 2021. "Dynamics of modulated waves and localized energy in a Burridge and Knopoff model of earthquake with velocity-dependant and hydrodynamics friction forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    17. D.Sornette & J.V. Andersen & A. Helmstetter & S.Gluzman & J.R.Grasso & V. Pisarenko, 2003. "Slider-Block Friction Model for Landslides: Application to Vaiont and Laclapière Landslides," THEMA Working Papers 2003-33, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    19. Baek, Haein & Chung, Ji-Bum & Yun, Gi Woong, 2021. "Differences in public perceptions of geothermal energy based on EGS technology in Korea after the Pohang earthquake: National vs. local," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    20. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6904-:d:294184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.