IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1473-1490.html
   My bibliography  Save this article

Induced seismicity in geothermal reservoirs: A review of forecasting approaches

Author

Listed:
  • Gaucher, Emmanuel
  • Schoenball, Martin
  • Heidbach, Oliver
  • Zang, Arno
  • Fokker, Peter A.
  • van Wees, Jan-Diederik
  • Kohl, Thomas

Abstract

In order to reach Europe׳s 2020 and 2050 targets in terms of greenhouse gas emissions, geothermal resources will have to contribute substantially to meeting carbon-free energy needs. However, public opinion may prevent future large-scale application of deep geothermal power plants, because induced seismicity is often perceived as an unsolicited and uncontrollable side effect of geothermal development. In the last decade, significant advances were made in the development of models to forecast induced seismicity, which are either based on catalogues of induced seismicity, on the underlying physical processes, or on a hybrid philosophy. In this paper, we provide a comprehensive overview of the existing approaches applied to geothermal contexts. This overview will outline the advantages and drawbacks of the different approaches, identify the gaps in our understanding, and describe the needs for geothermal observations. Most of the forecasting approaches focus on the stimulation phase of enhanced geothermal systems which are most prone to generate seismic events. Besides the statistical models suited for real-time applications during reservoir stimulation, the physics-based models have the advantage of considering sub-surface characteristics and estimating the impact of fluid circulation on the reservoir. Hence, to mitigate induced seismicity during major hydraulic stimulations, application of hybrid methods in a decision support system seems the best available solution. So far, however, little attention has been paid to geochemical effects on the failure process and to production periods. Quantitative modelling of induced seismicity still is a challenging and complex matter. Appropriate resources remain to be invested for the scientific community to continue its research and development efforts to successfully forecast induced seismicity in geothermal fields. This is a prerequisite for making this renewable energy resource sustainable and accessible worldwide.

Suggested Citation

  • Gaucher, Emmanuel & Schoenball, Martin & Heidbach, Oliver & Zang, Arno & Fokker, Peter A. & van Wees, Jan-Diederik & Kohl, Thomas, 2015. "Induced seismicity in geothermal reservoirs: A review of forecasting approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1473-1490.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1473-1490
    DOI: 10.1016/j.rser.2015.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen A. Miller & Cristiano Collettini & Lauro Chiaraluce & Massimo Cocco & Massimiliano Barchi & Boris J. P. Kaus, 2004. "Aftershocks driven by a high-pressure CO2 source at depth," Nature, Nature, vol. 427(6976), pages 724-727, February.
    2. Christopher H. Scholz, 1998. "Earthquakes and friction laws," Nature, Nature, vol. 391(6662), pages 37-42, January.
    3. Danijel Schorlemmer & Stefan Wiemer, 2005. "Microseismicity data forecast rupture area," Nature, Nature, vol. 434(7037), pages 1086-1086, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    2. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    3. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    5. Prabhav Borate & Jacques Rivière & Chris Marone & Ankur Mali & Daniel Kifer & Parisa Shokouhi, 2023. "Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Kang, Fangchao & Jia, Tianrang & Li, Yingchun & Deng, Jianhui & Tang, Chun'an & Huang, Xin, 2021. "Experimental study on the physical and mechanical variations of hot granite under different cooling treatments," Renewable Energy, Elsevier, vol. 179(C), pages 1316-1328.
    7. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2023. "Stochastic performance assessment on long-term behavior of multilateral closed deep geothermal systems," Renewable Energy, Elsevier, vol. 208(C), pages 26-35.
    8. Miguel Angel Marazuela & Alejandro García-Gil, 2022. "Frontier Research of Engineering: Geothermal Energy Utilization and Groundwater Heat Pump Systems," Sustainability, MDPI, vol. 14(21), pages 1-3, October.
    9. Diego Paltrinieri & Paolo Favali & Francesco Italiano & Patrizio Signanini & Carlo Caso & Fabrizio B. Armani, 2022. "The Marsili Seamount Offshore Geothermal Reservoir: A Big Challenge for an Energy Transition Model," Energies, MDPI, vol. 15(5), pages 1-16, March.
    10. Sandro Andrés & David Santillán & Juan Carlos Mosquera & Luis Cueto-Felgueroso, 2019. "Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    11. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    12. Elżbieta Węglińska & Andrzej Leśniak, 2021. "Induced Seismicity and Detailed Fracture Mapping as Tools for Evaluating HDR Reservoir Volume," Energies, MDPI, vol. 14(9), pages 1-17, May.
    13. Valeria Longobardi & Sahar Nazeri & Simona Colombelli & Raffaele Rea & Grazia De Landro & Aldo Zollo, 2023. "Time Domain Source Parameter Estimation of Natural and Man-Induced Microearthquakes at the Geysers Geothermal Field," Energies, MDPI, vol. 16(3), pages 1-15, January.
    14. Moraga, J. & Duzgun, H.S. & Cavur, M. & Soydan, H., 2022. "The Geothermal Artificial Intelligence for geothermal exploration," Renewable Energy, Elsevier, vol. 192(C), pages 134-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyu Sun & Matej Pec, 2021. "Nanometric flow and earthquake instability," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Elisenda Bakker & John Kaszuba & Sabine den Hartog & Suzanne Hangx, 2019. "Chemo‐mechanical behavior of clay‐rich fault gouges affected by CO2‐brine‐rock interactions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 19-36, February.
    3. Stuart Fraser & William Power & Xiaoming Wang & Laura Wallace & Christof Mueller & David Johnston, 2014. "Tsunami inundation in Napier, New Zealand, due to local earthquake sources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 415-445, January.
    4. Sandro Andrés & David Santillán & Juan Carlos Mosquera & Luis Cueto-Felgueroso, 2019. "Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Hafver, Andreas & Jettestuen, Espen & Feder, Jens & Meakin, Paul & Malthe-Sørenssen, Anders, 2014. "A node-splitting discrete element model for fluid–structure interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 61-79.
    6. Nkomom, Théodule Nkoa & Okaly, Joseph Brizar & Mvogo, Alain, 2021. "Dynamics of modulated waves and localized energy in a Burridge and Knopoff model of earthquake with velocity-dependant and hydrodynamics friction forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. D.Sornette & J.V. Andersen & A. Helmstetter & S.Gluzman & J.R.Grasso & V. Pisarenko, 2003. "Slider-Block Friction Model for Landslides: Application to Vaiont and Laclapière Landslides," THEMA Working Papers 2003-33, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Pelap, F.B. & Kagho, L.Y. & Fogang, C.F., 2016. "Chaotic behavior of earthquakes induced by a nonlinear magma up flow," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 71-83.
    9. G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
    10. Shoubiao Zhu, 2013. "Numerical simulation of dynamic mechanisms of the 2008 Wenchuan Ms8.0 earthquake: implications for earthquake prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(2), pages 1261-1279, November.
    11. Francesco Giuntoli & Luca Menegon & Guillaume Siron & Flavio Cognigni & Hugues Leroux & Roberto Compagnoni & Marco Rossi & Alberto Vitale Brovarone, 2024. "Methane-hydrogen-rich fluid migration may trigger seismic failure in subduction zones at forearc depths," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Shuo Zheng & Kai Qin & Lixin Wu & Yanfei An & Qifeng Yin & Chunkit Lai, 2020. "Hydrothermal anomalies of the Earth's surface and crustal seismicity related to Ms8.0 Wenchuan EQ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2097-2114, December.
    13. Nkomom, Théodule Nkoa & Ndzana, Fabien II & Okaly, Joseph Brizar & Mvogo, Alain, 2021. "Dynamics of nonlinear waves in a Burridge and Knopoff model for earthquake with long-range interactions, velocity-dependent and hydrodynamics friction forces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    14. Songlin Shi & Meng Wang & Yonatan Poles & Jay Fineberg, 2023. "How frictional slip evolves," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. R. Tiwari & Ashutosh Chamoli, 2015. "Is tidal forcing critical to trigger large Sumatra earthquakes?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 65-74, May.
    16. Bahman Bohloli & Magnus Soldal & Halvard Smith & Elin Skurtveit & Jung Chan Choi & Guillaume Sauvin, 2020. "Frictional Properties and Seismogenic Potential of Caprock Shales," Energies, MDPI, vol. 13(23), pages 1-19, November.
    17. Cunpeng Du & Haitao Yin & Shengwen Yu & Le Yang & Yuan Jia, 2023. "Effects of the 2011 Mw 9.0 Tohoku-Oki Earthquake on the Locking Characteristics and Seismic Risk of the Yishu Fault Zone in China," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    18. Mahendra Samaroo & Rick Chalaturnyk & Maurice Dusseault & Judy F. Chow & Hans Custers, 2022. "Assessment of the Brittle–Ductile State of Major Injection and Confining Formations in the Alberta Basin," Energies, MDPI, vol. 15(19), pages 1-23, September.
    19. Frédéric Cappa & Yves Guglielmi & Louis Barros, 2022. "Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Kostić, Srđan & Vasović, Nebojša & Todorović, Kristina & Franović, Igor, 2018. "Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 310-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1473-1490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.