IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v167y2022ics1364032122006189.html
   My bibliography  Save this article

A review of nanotechnology fluid applications in geothermal energy systems

Author

Listed:
  • Soltani, M.
  • Moradi Kashkooli, Farshad
  • Alian Fini, Mehdi
  • Gharapetian, Derrick
  • Nathwani, Jatin
  • Dusseault, Maurice B.

Abstract

Geothermal energy is a high potential energy source that can provide heat and power with minimal emissions. Recent advances in nanotechnology show that nanoparticles, such as CuO, TiO2, Al2O3, and Ag suspended in water, can enhance the heat transfer coefficient and rate. Here, we present a comprehensive review of nanotechnology use in closed geothermal heat pumps and heat exchangers. The study comprises: (i) detailed quantification of the effects of different parameters on a liquid suspension, including nanoparticle thermal conductivity, viscosity, volume fraction, density, specific heat capacity, mass flow rate, nanoparticle shape and size, Brownian motion, pressure drop, and friction factor; and (ii) an economic analysis of the benefits related to using of nanofluids in geothermal applications. We show that the overall performance of ground source geothermal systems improves through the use of low volume fractions of nanoparticles in suspension.

Suggested Citation

  • Soltani, M. & Moradi Kashkooli, Farshad & Alian Fini, Mehdi & Gharapetian, Derrick & Nathwani, Jatin & Dusseault, Maurice B., 2022. "A review of nanotechnology fluid applications in geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006189
    DOI: 10.1016/j.rser.2022.112729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Shouqiang & Liu, Kun & Wang, Dongjiao & Ye, Jiawei & Liang, Fulin, 2019. "A comprehensive review of ocean wave energy research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Madjid Soltani & Alireza Dehghani-Sanij & Ahmad Sayadnia & Farshad M. Kashkooli & Kobra Gharali & SeyedBijan Mahbaz & Maurice B. Dusseault, 2018. "Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface," Energies, MDPI, vol. 11(5), pages 1-23, April.
    3. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2015. "Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid," Energy, Elsevier, vol. 91(C), pages 685-699.
    4. Kioka, Arata & Nakagawa, Masami, 2021. "Theoretical and experimental perspectives in utilizing nanobubbles as inhibitors of corrosion and scale in geothermal power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    6. Ruiqing Du & Dandan Jiang & Yong Wang, 2020. "Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid," Energies, MDPI, vol. 13(7), pages 1-18, April.
    7. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    8. Syam Sundar, L. & Singh, Manoj K., 2013. "Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 23-35.
    9. York R. Smith & Pankaj Kumar & John D. McLennan, 2017. "On the Extraction of Rare Earth Elements from Geothermal Brines," Resources, MDPI, vol. 6(3), pages 1-16, August.
    10. Kazemi, A.R. & Mahbaz, S.B. & Dehghani-Sanij, A.R. & Dusseault, M.B. & Fraser, R., 2019. "Performance Evaluation of an Enhanced Geothermal System in the Western Canada Sedimentary Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Farzanehkhameneh, Pooya & Soltani, M. & Moradi Kashkooli, Farshad & Ziabasharhagh, Masoud, 2020. "Optimization and energy-economic assessment of a geothermal heat pump system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Hussein, Ahmed Kadhim, 2015. "Applications of nanotechnology in renewable energies—A comprehensive overview and understanding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 460-476.
    13. Dehghani-Sanij, A.R. & Tharumalingam, E. & Dusseault, M.B. & Fraser, R., 2019. "Study of energy storage systems and environmental challenges of batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 192-208.
    14. Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
    15. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    16. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    17. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    2. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    3. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    4. Pisarevsky, M.I. & Struchalin, P.G. & Balakin, B.V. & Kutsenko, K.V. & Maslov, Y.A., 2024. "Experimental study of nanofluid heat transfer for geothermal applications," Renewable Energy, Elsevier, vol. 221(C).
    5. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    6. Beragama Jathunge, Charaka & Darbandi, Amirhossein & Dworkin, Seth B. & Mwesigye, Aggrey, 2024. "Numerical investigation of the long-term thermal performance of a novel thermo-active foundation pile coupled with a ground source heat pump in a cold-climate," Energy, Elsevier, vol. 292(C).
    7. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
    8. Gianpiero Colangelo & Brenda Raho & Marco Milanese & Arturo de Risi, 2021. "Numerical Evaluation of a HVAC System Based on a High-Performance Heat Transfer Fluid," Energies, MDPI, vol. 14(11), pages 1-18, June.
    9. Sandro Andrés & David Santillán & Juan Carlos Mosquera & Luis Cueto-Felgueroso, 2019. "Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    10. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Marco Milanese & Francesco Micali & Gianpiero Colangelo & Arturo de Risi, 2022. "Experimental Evaluation of a Full-Scale HVAC System Working with Nanofluid," Energies, MDPI, vol. 15(8), pages 1-14, April.
    12. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    13. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    14. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    15. Thi Kim Tuoi, Truong & Van Toan, Nguyen & Ono, Takahito, 2022. "Self-powered wireless sensing system driven by daily ambient temperature energy harvesting," Applied Energy, Elsevier, vol. 311(C).
    16. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    17. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    18. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    19. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    20. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.