IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6219-d284293.html
   My bibliography  Save this article

Comparison of Active Nitrogen Loss in Four Pathways on a Sloped Peanut Field with Red Soil in China under Conventional Fertilization Conditions

Author

Listed:
  • Haijin Zheng

    (Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Nanchang 330029, China
    Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

  • Zhao Liu

    (Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Nanchang 330029, China
    Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

  • Xiaofei Nie

    (Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Nanchang 330029, China
    Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

  • Jichao Zuo

    (Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Nanchang 330029, China
    Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

  • Lingyun Wang

    (Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Nanchang 330029, China
    Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China)

Abstract

Active nitrogen loss mainly includes ammonia (NH 3 ) volatilization, nitrous oxide (N 2 O) emission, NO 3 − -N and NH 4 + -N deep leakage (N leaching), and NO 3 − -N and NH 4 + -N surface runoff (N runoff), resulting in serious environmental problems. To analyze the characteristics of active nitrogen loss in the four pathways on sloped farmland under conventional fertilization, six lysimeters with a slope of 8° were used. Losses due to NH 3 volatilization, N 2 O emission, N leaching, and N runoff were investigated after urea application on a peanut field with red soil in China during the growing season from 2017–2018. Results reveal that at conventional nitrogen levels of 150 and 172 kg hm −2 , the total active nitrogen loss caused by fertilization accounting for the total nitrogen applied was 5.57% and 14.21%, respectively, with the N 2 O emission coefficients of 0.18% and 0.10%, respectively; the NH 3 volatilization coefficients of 2.24% and 0.31%, respectively; the N leakage loss rates of 3.07% and 10.50%, respectively; and the N runoff loss rates of 0.08% and 3.30%, respectively. The dry year was dominated by leaching and NH 3 volatilization, while the wet year was dominated by leaching and runoff; the base fertilizer period was dominated by leakage, while the topdressing period was dominated by leakage and runoff, which suggests that the loss of active nitrogen in the soil-peanut system on a sloped red soil was mainly affected by rainfall and fertilization methods. Taken together, reasonable fertilization management and soil and water conservation measures appear to be effective in minimizing the loss of active nitrogen from nitrogen fertilizer.

Suggested Citation

  • Haijin Zheng & Zhao Liu & Xiaofei Nie & Jichao Zuo & Lingyun Wang, 2019. "Comparison of Active Nitrogen Loss in Four Pathways on a Sloped Peanut Field with Red Soil in China under Conventional Fertilization Conditions," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6219-:d:284293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    2. Hui Zhao & Xuyong Li & Yan Jiang, 2019. "Response of Nitrogen Losses to Excessive Nitrogen Fertilizer Application in Intensive Greenhouse Vegetable Production," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    3. Jie Liu & Jumei Li & Yibing Ma & Enli Wang & Qiong Liang & Yuehui Jia & Tingshu Li & Guocheng Wang, 2019. "Crop Productivity and Nitrogen Balance as Influenced by Nitrogen Deposition and Fertilizer Application in North China," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Li & Tao Wu & Guojun Jiang & Lijie Pu & Yan Li & Jianzhen Zhang & Fei Xu & Xuefeng Xie, 2021. "An Integrated Approach for Source Apportionment and Health Risk Assessment of Heavy Metals in Subtropical Agricultural Soils, Eastern China," Land, MDPI, vol. 10(10), pages 1-17, September.
    2. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    2. Simon Anastasiadis & Marie-Laure Nauleau & Suzi Kerr & Tim Cox & Kit Rutherford, 2011. "Does Complex Hydrology Require Complex Water Quality Policy? NManager Simulations for Lake Rotorua," Working Papers 11_14, Motu Economic and Public Policy Research.
    3. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.
    4. Charné Viljoen & Janke van der Colf & Pieter Andreas Swanepoel, 2020. "Benefits Are Limited with High Nitrogen Fertiliser Rates in Kikuyu-Ryegrass Pasture Systems," Land, MDPI, vol. 9(6), pages 1-20, May.
    5. Cathal Buckley & Paul Murphy & David Wall, 2013. "Farm-gate N and P balances and use efficiencies across specialist dairy farms in the Republic Ireland," Working Papers 1302, Rural Economy and Development Programme,Teagasc.
    6. Andreas Meyer-Aurich & Jørgen Olesen & Annette Prochnow & Reiner Brunsch, 2013. "Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(7), pages 921-932, October.
    7. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    8. Cecilia Bellora & Élodie Blanc & Jean-Marc Bourgeon & Eric Strobl, 2018. "Estimating the Impact of Crop Diversity on Agricultural Productivity in South Africa," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 185-215, National Bureau of Economic Research, Inc.
    9. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    10. Ahmmed Md Motasim & Abd Wahid Samsuri & Arina Shairah Abdul Sukor & Amin Mohd Adibah, 2021. "Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    11. Zehui Liu & Harald E. Rieder & Christian Schmidt & Monika Mayer & Yixin Guo & Wilfried Winiwarter & Lin Zhang, 2023. "Optimal reactive nitrogen control pathways identified for cost-effective PM2.5 mitigation in Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Feifei Pan & Sha Pan & Jiao Tang & Jingping Yuan & Huaixia Zhang & Bihua Chen, 2022. "Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    13. Feng, Qi & An, Chunjiang & Chen, Zhi & Wang, Zheng, 2020. "Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Chaoqiang Jiang & Xuexiang Ren & Huoyan Wang & Dianjun Lu & Chaolong Zu & Shiji Wang, 2019. "Optimal Nitrogen Application Rates of One-Time Root Zone Fertilization and the Effect of Reducing Nitrogen Application on Summer Maize," Sustainability, MDPI, vol. 11(10), pages 1-10, May.
    15. Castro Campos, Bente & Petrick, Martin, 2020. "Agricultural Land Use, Local Political Power, and Groundwater Nitrate Contamination in Germany," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305583, German Association of Agricultural Economists (GEWISOLA).
    16. Gong, Aolin & Mieno, Taro & Bullock, David S., 2022. "Using On-farm Precision Experimentation Data to Analyse Maximum Return to Nitrogen (MRTN) Recommendations," Agri-Tech Economics Papers 337140, Harper Adams University, Land, Farm & Agribusiness Management Department.
    17. Koesling, Matthias & Hansen, Sissel & Bleken, Marina Azzaroli, 2017. "Variations in nitrogen utilisation on conventional and organic dairy farms in Norway," Agricultural Systems, Elsevier, vol. 157(C), pages 11-21.
    18. Simon Anastasiadis & Suzi Kerr & Marie-Laure Nauleau & Tim Cox & Kit Rutherford, 2014. "Does complex hydrology require complex water quality policy?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), pages 130-145, January.
    19. Buckley, Cathal & Hynes, Stephen & Mechan, Sarah, 2012. "Operating or not Operating at the Margin: Farmers Willingness to Adopt a Riparian Buffer Zone," Working Papers 148830, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    20. Xuege Wang & Fengqin Yan & Yinwei Zeng & Ming Chen & Bin He & Lu Kang & Fenzhen Su, 2021. "Ecosystem Services Changes on Farmland in Response to Urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area of China," Land, MDPI, vol. 10(5), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6219-:d:284293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.