IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i5p501-d550545.html
   My bibliography  Save this article

Ecosystem Services Changes on Farmland in Response to Urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area of China

Author

Listed:
  • Xuege Wang

    (School of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China
    State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Collaborative Innovation Center for the South China Sea Studies, Nanjing University, Nanjing 210023, China
    Department of Geography, Ghent University, 9000 Ghent, Belgium)

  • Fengqin Yan

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Collaborative Innovation Center for the South China Sea Studies, Nanjing University, Nanjing 210023, China
    Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China)

  • Yinwei Zeng

    (Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium)

  • Ming Chen

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Bin He

    (Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Lu Kang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Fenzhen Su

    (School of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China
    State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Collaborative Innovation Center for the South China Sea Studies, Nanjing University, Nanjing 210023, China
    Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area. The results showed that 3711.3 km 2 of farmland disappeared because of urbanization, and paddy fields suffered much higher losses than dry farmland. Most of the farmland was converted to urban residential land from 1980 to 2018. In the past 38 years, the ESV of farmland decreased by 5036.7 million yuan due to urbanization, with the highest loss of 2177.5 million yuan from 2000–2010. The hydrological regulation, food production and gas regulation of farmland decreased the most due to urbanization. The top five cities that had the largest total ESV loss of farmland caused by urbanization were Guangzhou, Dongguan, Foshan, Shenzhen and Huizhou. This study revealed that urbanization has increasingly become the dominant reason for farmland loss in the GBA. Our study suggests that governments should increase the construction of ecological cities and attractive countryside to protect farmland and improve the regional ESV.

Suggested Citation

  • Xuege Wang & Fengqin Yan & Yinwei Zeng & Ming Chen & Bin He & Lu Kang & Fenzhen Su, 2021. "Ecosystem Services Changes on Farmland in Response to Urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area of China," Land, MDPI, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:501-:d:550545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/5/501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/5/501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Luo & Liu, Zhenjie & Gong, Jianzhou & Wang, Lu & Hu, Yueming, 2019. "Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy," Land Use Policy, Elsevier, vol. 81(C), pages 256-266.
    2. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    3. Brown, Greg & Fagerholm, Nora, 2015. "Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation," Ecosystem Services, Elsevier, vol. 13(C), pages 119-133.
    4. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    5. Xiangbin Kong, 2014. "China must protect high-quality arable land," Nature, Nature, vol. 506(7486), pages 7-7, February.
    6. Guangzhong Cao & Changchun Feng & Ran Tao, 2008. "Local “Land Finance” in China's Urban Expansion: Challenges and Solutions," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 16(2), pages 19-30, March.
    7. Narducci, Jenna & Quintas-Soriano, Cristina & Castro, Antonio & Som-Castellano, Rebecca & Brandt, Jodi S., 2019. "Implications of urban growth and farmland loss for ecosystem services in the western United States," Land Use Policy, Elsevier, vol. 86(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingxian Deng & Ren Yang, 2021. "Influence Mechanism of Production-Living-Ecological Space Changes in the Urbanization Process of Guangdong Province, China," Land, MDPI, vol. 10(12), pages 1-20, December.
    2. Alessio Russo & Giuseppe T. Cirella, 2021. "Urban Ecosystem Services: Current Knowledge, Gaps, and Future Research," Land, MDPI, vol. 10(8), pages 1-4, August.
    3. Yabo Zhao & Weiwei Zhang & Cansong Li & Shifa Ma & Xiwen Zhang & Haiyan Jiang, 2022. "Disturbances Brought about by Human Activities in Relation to the Eco-Environment of the Main Stream of the Tarim River, 2000–2020," Land, MDPI, vol. 11(3), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Congmou Zhu & Lixia Yang & Qiuyu Xu & Jinwei Fu & Yue Lin & Le Sun & Shan He & Shaofeng Yuan, 2022. "A Comparative Analysis of Farmland Occupation by Urban Sprawl and Rural Settlement Expansion in China," Land, MDPI, vol. 11(10), pages 1-16, October.
    2. Chen, Xin & Yu, Le & Du, Zhenrong & Liu, Zhu & Qi, Yuan & Liu, Tao & Gong, Peng, 2022. "Toward sustainable land use in China: A perspective on China’s national land surveys," Land Use Policy, Elsevier, vol. 123(C).
    3. Gao, Runyi & Chuai, Xiaowei & Ge, Jingfeng & Wen, Jiqun & Zhao, Rongqin & Zuo, Tianhui, 2022. "An integrated tele-coupling analysis for requisition–compensation balance and its influence on carbon storage in China," Land Use Policy, Elsevier, vol. 116(C).
    4. Liu, Chenyu & Song, Changqing & Ye, Sijing & Cheng, Feng & Zhang, Leina & Li, Chao, 2023. "Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years," Land Use Policy, Elsevier, vol. 131(C).
    5. Wai Soe Zin & Aya Suzuki & Kelvin S.-H. Peh & Alexandros Gasparatos, 2019. "Economic Value of Cultural Ecosystem Services from Recreation in Popa Mountain National Park, Myanmar: A Comparison of Two Rapid Valuation Techniques," Land, MDPI, vol. 8(12), pages 1-20, December.
    6. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    7. Pietrzyk-Kaszyńska, Agata & Olszańska, Agnieszka & Rechciński, Marcin & Tusznio, Joanna & Grodzińska-Jurczak, Małgorzata, 2022. "Divergent or convergent? Prioritization and spatial representation of ecosystem services as perceived by conservation professionals and local leaders," Land Use Policy, Elsevier, vol. 119(C).
    8. Ming-Kuang Chung & Dau-Jye Lu & Bor-Wen Tsai & Kuei-Tien Chou, 2019. "Assessing Effectiveness of PPGIS on Protected Areas by Governance Quality: A Case Study of Community-Based Monitoring in Wu-Wei-Kang Wildlife Refuge, Taiwan," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    9. Chengqiang Li & Junxiao Wang & Liang Ge & Yujie Zhou & Shenglu Zhou, 2022. "Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    10. Víctor García-Díez & Marina García-Llorente & José A. González, 2020. "Participatory Mapping of Cultural Ecosystem Services in Madrid: Insights for Landscape Planning," Land, MDPI, vol. 9(8), pages 1-15, July.
    11. Arki, Vesa & Koskikala, Joni & Fagerholm, Nora & Kisanga, Danielson & Käyhkö, Niina, 2020. "Associations between local land use/land cover and place-based landscape service patterns in rural Tanzania," Ecosystem Services, Elsevier, vol. 41(C).
    12. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    13. Loc, Ho Huu & Park, Edward & Thu, Tran Ngoc & Diep, Nguyen Thi Hong & Can, Nguyen Trong, 2021. "An enhanced analytical framework of participatory GIS for ecosystem services assessment applied to a Ramsar wetland site in the Vietnam Mekong Delta," Ecosystem Services, Elsevier, vol. 48(C).
    14. Siyi Chen & Zhigang Chen & Yan Shen, 2021. "Can improving law enforcement effectively curb illegal land use in China?," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-17, February.
    15. Beichen Ge & Congjin Wang & Yuhong Song, 2023. "Ecosystem Services Research in Rural Areas: A Systematic Review Based on Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    16. Jennifer Hodbod & Emma Tebbs & Kristofer Chan & Shubhechchha Sharma, 2019. "Integrating Participatory Methods and Remote Sensing to Enhance Understanding of Ecosystem Service Dynamics Across Scales," Land, MDPI, vol. 8(9), pages 1-30, August.
    17. Chen, Yuangong & Chen, Wenli & Gong, Jianzhou & Yuan, Haiwei, 2023. "Uncommonly known change characteristics of land use pattern in Guangdong Province–Hong Kong–Macao, China: Space time pattern, terrain gradient effects and policy implication," Land Use Policy, Elsevier, vol. 125(C).
    18. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    19. Simon Anastasiadis & Marie-Laure Nauleau & Suzi Kerr & Tim Cox & Kit Rutherford, 2011. "Does Complex Hydrology Require Complex Water Quality Policy? NManager Simulations for Lake Rotorua," Working Papers 11_14, Motu Economic and Public Policy Research.
    20. Cheng, Mingyang & Yansui Liu, & Zhou, Yang, 2019. "Measuring the symbiotic development of rural housing and industry: A case study of Fuping County in the Taihang Mountains in China," Land Use Policy, Elsevier, vol. 82(C), pages 307-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:501-:d:550545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.