IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5768-d277670.html
   My bibliography  Save this article

A Multivariate Modeling Analysis of Commuters’ Non-Work Activity Allocations in Xiaoshan District of Hangzhou, China

Author

Listed:
  • Xin Guan

    (Key Laboratory of Road and Traffic Engineering of Ministry of Education, College of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Xin Ye

    (Key Laboratory of Road and Traffic Engineering of Ministry of Education, College of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Cheng Shi

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

  • Yajie Zou

    (Key Laboratory of Road and Traffic Engineering of Ministry of Education, College of Transportation Engineering, Tongji University, Shanghai 201804, China)

Abstract

This paper investigates the outdoor non-work activity allocation behaviors of commuters in Xiaoshan District of Hangzhou, China, as well as the underlying relationship among different types of outdoor non-work activities. As per their commute and work schedules, commuters’ outdoor non-work activities are classified into six categories and considered as binary dependent variables for modeling analysis, including from home before work, on commute way from home to work, going home during work, going out (not going home) during work, on commute way from work back home, and from home after work. Independent variables include commute attributes, work schedules, sociodemographic attributes, and built-environmental attributes. A multivariate probit model is developed to explore the effects of explanatory variables and capture correlations among unobserved influential factors. The model estimation results show that daily work time, education years, and traffic zone have substantial impacts on commuters’ non-work activity allocations. As for the underlying relationship among unobserved factors, a positive correlation is found between the outdoor non-work activities on commute way to and from work, indicating a mutually promotive relationship. All other correlations are negative, indicating other types of non-work activities are mutually substitutive. These findings will help to better understand commuters’ behaviors of outdoor activity arrangement subject to the time-space constraint from fixed work schedules, and shed some light on the mechanism of complex work tour formation, so as to guide the development of activity-based travel demand models for commuters.

Suggested Citation

  • Xin Guan & Xin Ye & Cheng Shi & Yajie Zou, 2019. "A Multivariate Modeling Analysis of Commuters’ Non-Work Activity Allocations in Xiaoshan District of Hangzhou, China," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5768-:d:277670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    2. Axel Borsch-Supan & Vassilis Hajivassiliou & Laurence J. Kotlikoff, 1992. "Health, Children, and Elderly Living Arrangements: A Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors," NBER Chapters, in: Topics in the Economics of Aging, pages 79-108, National Bureau of Economic Research, Inc.
    3. Mothafer, Ghasak I.M.A. & Yamamoto, Toshiyuki & Shankar, Venkataraman N., 2018. "A multivariate heterogeneous-dispersion count model for asymmetric interdependent freeway crash types," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 84-105.
    4. Bhat, Chandra, 1999. "An analysis of evening commute stop-making behavior using repeated choice observations from a multi-day survey," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 495-510, September.
    5. Currie, Graham & Delbosc, Alexa, 2011. "Exploring the trip chaining behaviour of public transport users in Melbourne," Transport Policy, Elsevier, vol. 18(1), pages 204-210, January.
    6. Tang, Jinjun & Liang, Jian & Zhang, Shen & Huang, Helai & Liu, Fang, 2018. "Inferring driving trajectories based on probabilistic model from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 566-577.
    7. Xin Ye & Ke Wang & Yajie Zou & Dominique Lord, 2018. "A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-17, May.
    8. Yajie Zou & Xinzhi Zhong & Jinjun Tang & Xin Ye & Lingtao Wu & Muhammad Ijaz & Yinhai Wang, 2019. "A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    9. David Hensher & April Reyes, 2000. "Trip chaining as a barrier to the propensity to use public transport," Transportation, Springer, vol. 27(4), pages 341-361, December.
    10. Vande Walle, Stefaan & Steenberghen, Therese, 2006. "Space and time related determinants of public transport use in trip chains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 151-162, February.
    11. Alessandro Portoghese & Erika Spissu & Chandra Bhat & Naveen Eluru & Italo Meloni, 2011. "A Copula-Based Joint Model Of Commute Mode Choice And Number Of Non-Work Stops During The Commute," Articles, International Journal of Transport Economics, vol. 38(3).
    12. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    13. Ruone Zhang & Xin Ye & Ke Wang & Dongjin Li & Jiayu Zhu, 2019. "Development of Commute Mode Choice Model by Integrating Actively and Passively Collected Travel Data," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    14. David Levinson & Ajay Kumar, 1995. "Activity, Travel, and the Allocation of Time," Working Papers 199505, University of Minnesota: Nexus Research Group.
    15. Susilo, Yusak O. & Kitamura, Ryuichi, 2008. "Structural changes in commuters' daily travel: The case of auto and transit commuters in the Osaka metropolitan area of Japan, 1980-2000," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 95-115, January.
    16. Yajie Zou & John E. Ash & Byung-Jung Park & Dominique Lord & Lingtao Wu, 2018. "Empirical Bayes estimates of finite mixture of negative binomial regression models and its application to highway safety," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1652-1669, July.
    17. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    18. Stephan Brunow & Manuela Gründer, 2013. "The impact of activity chaining on the duration of daily activities," Transportation, Springer, vol. 40(5), pages 981-1001, September.
    19. Changxi Ma & Ruichun He & Wei Zhang, 2018. "Path optimization of taxi carpooling," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-15, August.
    20. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    21. Jie Ma & Xin Ye & Cheng Shi, 2018. "Development of Multivariate Ordered Probit Model to Understand Household Vehicle Ownership Behavior in Xiaoshan District of Hangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    22. Lorenzo Cappellari & Stephen P. Jenkins, 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LP, vol. 3(3), pages 278-294, September.
    23. Xinyu Cao & Patricia L Mokhtarian & Susan L Handy, 2008. "Differentiating the Influence of Accessibility, Attitudes, and Demographics on Stop Participation and Frequency during the Evening Commute," Environment and Planning B, , vol. 35(3), pages 431-442, June.
    24. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    25. Bhat, Chandra R., 1997. "Work travel mode choice and number of non-work commute stops," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 41-54, February.
    26. Kees Maat & Bert van Wee & Dominic Stead, 2005. "Land Use and Travel Behaviour: Expected Effects from the Perspective of Utility Theory and Activity-Based Theories," Environment and Planning B, , vol. 32(1), pages 33-46, February.
    27. Manoj, M. & Verma, Ashish, 2015. "Activity-travel behaviour of non-workers belonging to different income group households in Bangalore, India," Journal of Transport Geography, Elsevier, vol. 49(C), pages 99-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    2. Rafiq, Rezwana & McNally, Michael G., 2022. "A structural analysis of the work tour behavior of transit commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 61-79.
    3. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    4. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    5. Huang, Yuqiao & Gao, Linjie & Ni, Anning & Liu, Xiaoning, 2021. "Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 93(C).
    6. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    7. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    8. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    9. Ruone Zhang & Xin Ye & Ke Wang & Dongjin Li & Jiayu Zhu, 2019. "Development of Commute Mode Choice Model by Integrating Actively and Passively Collected Travel Data," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    10. Joachim Scheiner & Christian Holz-Rau, 2017. "Women’s complex daily lives: a gendered look at trip chaining and activity pattern entropy in Germany," Transportation, Springer, vol. 44(1), pages 117-138, January.
    11. Joseph F. Wyer, 2018. "Urban Transportation Mode Choice And Trip Complexity: Bicyclists Stick To Their Gears," Economic Inquiry, Western Economic Association International, vol. 56(3), pages 1777-1787, July.
    12. Chen Xu & Decun Dong & Dongxiu Ou & Changxi Ma, 2019. "Time-of-Day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections," IJERPH, MDPI, vol. 16(5), pages 1-18, March.
    13. François Sprumont & Ariane Scheffer & Geoffrey Caruso & Eric Cornelis & Francesco Viti, 2022. "Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    14. Günter Wallner & Simone Kriglstein & Edward Chung & Syeed Anta Kashfi, 2018. "Visualisation of trip chaining behaviour and mode choice using household travel survey data," Public Transport, Springer, vol. 10(3), pages 427-453, December.
    15. Tufayel Chowdhury & Darren M. Scott, 2020. "Role of the built environment on trip-chaining behavior: an investigation of workers and non-workers in Halifax, Nova Scotia," Transportation, Springer, vol. 47(2), pages 737-761, April.
    16. Rafiq, Rezwana & McNally, Michael G., 2020. "An empirical analysis and policy implications of work tours utilizing public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 237-259.
    17. De Witte, Astrid & Hollevoet, Joachim & Dobruszkes, Frédéric & Hubert, Michel & Macharis, Cathy, 2013. "Linking modal choice to motility: A comprehensive review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 329-341.
    18. Tang, Jinjun & Hu, Jin & Hao, Wei & Chen, Xinqiang & Qi, Yong, 2020. "Markov Chains based route travel time estimation considering link spatio-temporal correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. Stephan Brunow & Manuela Gründer, 2013. "The impact of activity chaining on the duration of daily activities," Transportation, Springer, vol. 40(5), pages 981-1001, September.
    20. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5768-:d:277670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.