IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i5p870-d212534.html
   My bibliography  Save this article

Time-of-Day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections

Author

Listed:
  • Chen Xu

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, School of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Decun Dong

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, School of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Dongxiu Ou

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, School of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Changxi Ma

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

This paper proposes a novel two-order optimization model of the division of time-of-day control segmented points of road intersection to address the limitations of the randomness of artificial experience, avoid the complex multi-factor division calculation, and optimize the traditional model over traffic safety and data-driven methods. For the first-order optimization—that is, deep optimization of the model input data—we first increase the dimension of traditional traffic flow data by data-driven and traffic safety methods, and develop a vector quantity to represent the size, direction, and time frequency with conflict point traffic of the total traffic flow at a certain intersection for a period by introducing a 3D vector of intersection traffic flow. Then, a time-series segmentation algorithm is used to recurse the distance amongst adjacent vectors to obtain the initial scheme of segmented points, and the segmentation points are finally divided by the combination of the preliminary scheme. For the second-order optimization—that is, model adaptability analysis—the traffic flow data at intersections are subjected to standardised processing by five-number summary. The different traffic flow characteristics of the intersection are categorised by the K central point clustering algorithm of big data, and an applicability analysis of each type of intersection is conducted by using an innovated piecewise point division model. The actual traffic flow data of 155 intersections in Yuecheng District, Shaoxing, China, in 2016 are tested. Four types of intersections in the tested range are evaluated separately by the innovated piecewise point division model and the traditional total flow segmentation model on the basis of Synchro 7 simulation software. It is shown that when the innovated double-order optimization model is used in the intersection according to the ‘hump-type’ traffic flow characteristic, its control is more accurate and efficient than that of the traditional total flow segmentation model. The total delay time is reduced by approximately 5.6%. In particular, the delay time in the near-peak-flow buffer period is significantly reduced by approximately 17%. At the same time, the traffic accident rate has also dropped significantly, effectively improving traffic safety at intersections.

Suggested Citation

  • Chen Xu & Decun Dong & Dongxiu Ou & Changxi Ma, 2019. "Time-of-Day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections," IJERPH, MDPI, vol. 16(5), pages 1-18, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:870-:d:212534
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/5/870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/5/870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Changxi Ma & Ruichun He & Wei Zhang, 2018. "Path optimization of taxi carpooling," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-15, August.
    2. Changxi Ma & Wei Hao & Fuquan Pan & Wang Xiang, 2018. "Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-22, June.
    3. Nengchao Lyu & Lian Xie & Chaozhong Wu & Qiang Fu & Chao Deng, 2017. "Driver’s Cognitive Workload and Driving Performance under Traffic Sign Information Exposure in Complex Environments: A Case Study of the Highways in China," IJERPH, MDPI, vol. 14(2), pages 1-25, February.
    4. Tang, Jinjun & Liang, Jian & Zhang, Shen & Huang, Helai & Liu, Fang, 2018. "Inferring driving trajectories based on probabilistic model from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 566-577.
    5. Changxi Ma & Wei Hao & Ruichun He & Xiaoyan Jia & Fuquan Pan & Jing Fan & Ruiqi Xiong, 2018. "Distribution path robust optimization of electric vehicle with multiple distribution centers," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    6. Yajie Zou & John E. Ash & Byung-Jung Park & Dominique Lord & Lingtao Wu, 2018. "Empirical Bayes estimates of finite mixture of negative binomial regression models and its application to highway safety," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(9), pages 1652-1669, July.
    7. Changxi Ma & Cunrui Ma & Qing Ye & Ruichun He & Jieyan Song, 2014. "An Improved Genetic Algorithm for the Large-Scale Rural Highway Network Layout," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, April.
    8. Feng Chen & Suren Chen & Xiaoxiang Ma, 2016. "Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models," IJERPH, MDPI, vol. 13(6), pages 1-16, June.
    9. Xin Ye & Ke Wang & Yajie Zou & Dominique Lord, 2018. "A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-17, May.
    10. Xuecai Xu & S C Wong & Feng Zhu & Xin Pei & Helai Huang & Youjun Liu, 2017. "A Heckman selection model for the safety analysis of signalized intersections," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianping Zhang & Zhenling Chen & Weidong Liu & Pengxin Ding & Qinggang Wu, 2021. "A Field Study of Work Type Influence on Air Traffic Controllers’ Fatigue Based on Data-Driven PERCLOS Detection," IJERPH, MDPI, vol. 18(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changxi Ma & Dong Yang & Jibiao Zhou & Zhongxiang Feng & Quan Yuan, 2019. "Risk Riding Behaviors of Urban E-Bikes: A Literature Review," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
    2. Xin Guan & Xin Ye & Cheng Shi & Yajie Zou, 2019. "A Multivariate Modeling Analysis of Commuters’ Non-Work Activity Allocations in Xiaoshan District of Hangzhou, China," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    3. Wang, Chao & Ma, Changxi & Xu, Xuecai(Daniel), 2020. "Multi-objective optimization of real-time customized bus routes based on two-stage method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    6. Ruone Zhang & Xin Ye & Ke Wang & Dongjin Li & Jiayu Zhu, 2019. "Development of Commute Mode Choice Model by Integrating Actively and Passively Collected Travel Data," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    7. Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Qi, Xinyue & Ge, Hongxia & Cheng, Rongjun, 2019. "Analysis of a novel lattice hydrodynamic model considering density integral and “backward looking” effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 714-723.
    10. Ren, Weilin & Cheng, Rongjun & Ge, Hongxia, 2021. "Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    11. Ma, Xinjuan & Ge, Hongxia & Cheng, Rongjun, 2019. "Influences of acceleration with memory on stability of traffic flow and vehicle’s fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 143-154.
    12. Tang, Jinjun & Hu, Jin & Hao, Wei & Chen, Xinqiang & Qi, Yong, 2020. "Markov Chains based route travel time estimation considering link spatio-temporal correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. Huimin Liu & Yuhong Wang, 2021. "Impact of Strong Wind and Optimal Estimation of Flux Difference Integral in a Lattice Hydrodynamic Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    14. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    15. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Changxi Ma & Jibiao Zhou & Dong Yang, 2020. "Causation Analysis of Hazardous Material Road Transportation Accidents Based on the Ordered Logit Regression Model," IJERPH, MDPI, vol. 17(4), pages 1-25, February.
    17. Lukuman Wahab & Haobin Jiang, 2019. "A comparative study on machine learning based algorithms for prediction of motorcycle crash severity," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-17, April.
    18. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    19. Yajie Zou & Xinzhi Zhong & Jinjun Tang & Xin Ye & Lingtao Wu & Muhammad Ijaz & Yinhai Wang, 2019. "A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    20. Yichuan Peng & Yuming Jiang & Jian Lu & Yajie Zou, 2018. "Examining the effect of adverse weather on road transportation using weather and traffic sensors," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:870-:d:212534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.