IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5176-d269358.html
   My bibliography  Save this article

Hydrologic Alteration at the Upper and Middle Part of the Yangtze River, China: Towards Sustainable Water Resource Management Under Increasing Water Exploitation

Author

Listed:
  • Rawshan Ali

    (College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
    Department of Petroleum, Koya Technical Institute, Erbil Polytechnic University, Erbil 44001, Kurdistan, Iraq)

  • Alban Kuriqi

    (CERIS, Instituto Superior Tecnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal)

  • Shadan Abubaker

    (Department of Environmental Engineering, College of Engineering, Knowledge University, Erbil 44001, Kurdistan, Iraq)

  • Ozgur Kisi

    (School of Technology, IIia State University, Tbilisi 0162, Georgia)

Abstract

The human influence on the river ecosystem has increased in recent years to feed the growing demand for water to communities by constructing different water structures. It is essential to understand the potential impacts of water structures on river hydrologic regimes. Thus, this study investigates the influence of the cascade dams located upstream of the Three Gorges Dam on the Yangtze River on the river ecosystem. The study was carried out for the period 2003–2015 for both Cuntan and Miaohe stations. The analysis was conducted considering two periods, pre-impact; before the dam construction and post-impact; after the dam construction. The assessment was carried out using “Indicators of Hydrologic Alteration.” The results of this study revealed that the cascade dams built upstream of Three Gorges Dam has both positive and negative impacts at both stations. Flows were found to have positive impacts in July while low in October for both stations. The 1-day minimum flows were found to decrease by 7% over Miaohe Station while the 1-day maximum was decreased up to 2% in Cuntan. Overall, the results of the study indicate that there are undesirable impacts which should be adjusted to maintain the river ecosystem at an acceptable level compared to its natural state. It is expected that the findings of the study can guide water managers to adjust the hydropower operation sustainably.

Suggested Citation

  • Rawshan Ali & Alban Kuriqi & Shadan Abubaker & Ozgur Kisi, 2019. "Hydrologic Alteration at the Upper and Middle Part of the Yangtze River, China: Towards Sustainable Water Resource Management Under Increasing Water Exploitation," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5176-:d:269358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang Xiao-jun & Zhang Jian-yun & Shamsuddin Shahid & Amgad ElMahdi & He Rui-min & Bao Zhen-xin & Mahtab Ali, 2012. "Water resources management strategy for adaptation to droughts in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(8), pages 923-937, December.
    2. Xiao-jun Wang & Jian-yun Zhang & Shahid Shamsuddin & Ru-lin Oyang & Tie-sheng Guan & Jian-guo Xue & Xu Zhang, 2017. "Impacts of climate variability and changes on domestic water use in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 595-608, April.
    3. Jilong Chen & Xinrui Fang & Zhaofei Wen & Qiao Chen & Maohua Ma & Yuanyang Huang & Shengjun Wu & Liang Emlyn Yang, 2018. "Spatio-Temporal Patterns and Impacts of Sediment Variations in Downstream of the Three Gorges Dam on the Yangtze River, China," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agaton, Casper Boongaling & Guno, Charmaine Samala & Villanueva, Resy Ordona & Villanueva, Riza Ordona, 2020. "Economic analysis of waste-to-energy investment in the Philippines: A real options approach," Applied Energy, Elsevier, vol. 275(C).
    2. Jia, Jinda & Shan, Xiaobiao & Upadrashta, Deepesh & Xie, Tao & Yang, Yaowen & Song, Rujun, 2020. "An asymmetric bending-torsional piezoelectric energy harvester at low wind speed," Energy, Elsevier, vol. 198(C).
    3. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    4. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    6. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    7. Taesam Lee & Kiyoung Seong & Seung Oh Lee & Hyung Ju Yoo, 2022. "Safety First? Lessons from the Hapcheon Dam Flood in 2020," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    8. Linze Li & Nana Yang & Jiansong Li & Ankang He & Huan Yang & Zilong Jiang & Yumin Zhao, 2021. "Exploring the interactive coupled relationship between urban construction and resource environment in Wuhan, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11179-11200, August.
    9. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    10. Cheng, Ying & Liu, Mingbo & Chen, Honglin & Yang, Ziwei, 2021. "Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage," Energy, Elsevier, vol. 216(C).
    11. Kamal Abdelrahim Mohamed Shuka & Wang Ke & Mohammad Sohail Nazar & Ghali Abdullahi Abubakar & AmirReza Shahtahamssebi, 2022. "Impact of Hydrological Infrastructure Projects on Land Use/Cover and Socioeconomic Development in Arid Regions—Evidence from the Upper Atbara and Setit Dam Complex, Kassala, Eastern Sudan," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    12. Naresh Suwal & Alban Kuriqi & Xianfeng Huang & João Delgado & Dariusz Młyński & Andrzej Walega, 2020. "Environmental Flows Assessment in Nepal: The Case of Kaligandaki River," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
    13. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    14. Chen, Liang, 2020. "Impacts of climate change on wind resources over North America based on NA-CORDEX," Renewable Energy, Elsevier, vol. 153(C), pages 1428-1438.
    15. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).
    16. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    17. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    18. Suwal, Naresh & Huang, Xianfeng & Kuriqi, Alban & Chen, Yingqin & Pandey, Kamal Prasad & Bhattarai, Khem Prasad, 2020. "Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes," Renewable Energy, Elsevier, vol. 158(C), pages 453-464.
    19. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Solangi, Yasir Ahmed & Longsheng, Cheng & Shah, Syed Ahsan Ali, 2021. "Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 173(C), pages 209-222.
    21. Usman, Ojonugwa & Alola, Andrew Adewale & Sarkodie, Samuel Asumadu, 2020. "Assessment of the role of renewable energy consumption and trade policy on environmental degradation using innovation accounting: Evidence from the US," Renewable Energy, Elsevier, vol. 150(C), pages 266-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ke-Xin & Xu, Fei-Ran & Zhou, Yan & Ma, Tao, 2024. "The heterogeneous effects of non-hydro renewable energy and water resources on industrial development of the Yellow river and Yangtze river basins," Energy, Elsevier, vol. 301(C).
    2. Mohammad Ahsan Uddin & ASM Maksud Kamal & Shamsuddin Shahid & Eun-Sung Chung, 2020. "Volatility in Rainfall and Predictability of Droughts in Northwest Bangladesh," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    3. Farnaz Pourzand & Ilan Noy & Yigit Saglam, 2019. "Droughts and farms' financial performance in New Zealand: a micro farm-level study," CESifo Working Paper Series 7633, CESifo.
    4. Shazia Kousar & Farhan Ahmed & María de las Nieves López García & Nimra Ashraf, 2020. "Renewable Energy Consumption, Water Crises, and Environmental Degradation with Moderating Role of Governance: Dynamic Panel Analysis under Cross-Sectional Dependence," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    5. Wang Xiao-jun & Zhang Jian-yun & Amgad Elmahdi & Shamsuddin Shahid & Gao Juan, 2023. "A water resources assessment framework for management strategies of large coal-power bases development in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-19, August.
    6. Mahiuddin Alamgir & Morteza Mohsenipour & Rajab Homsi & Xiaojun Wang & Shamsuddin Shahid & Mohammed Sanusi Shiru & Nor Eliza Alias & Ali Yuzir, 2019. "Parametric Assessment of Seasonal Drought Risk to Crop Production in Bangladesh," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    7. Ziqi Yan & Yapeng Zhang & Zuhao Zhou & Ning Han, 2017. "The spatio-temporal variability of droughts using the standardized precipitation index in Yunnan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1023-1042, September.
    8. Zhang, Kang & Xie, Xianhong & Zhu, Bowen & Meng, Shanshan & Yao, Yi, 2019. "Unexpected groundwater recovery with decreasing agricultural irrigation in the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 858-867.
    9. Cortignani, Raffaele & Dell’Unto, Davide & Dono, Gabriele, 2021. "Paths of adaptation to climate change in major Italian agricultural areas: Effectiveness and limits in supporting the profitability of farms," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Mahsa Mirdashtvan & Ali Najafinejad & Arash Malekian & Amir Sa’doddin, 2021. "Sustainable Water Supply and Demand Management in Semi-arid Regions: Optimizing Water Resources Allocation Based on RCPs Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5307-5324, December.
    11. Shang, Yizi & Lu, Shibao & Shang, Ling & Li, Xiaofei & Shi, Hongwang & Li, Wei, 2017. "Decomposition of industrial water use from 2003 to 2012 in Tianjin, China," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 53-61.
    12. Birthal, Pratap S. & Negi, Digvijay S. & Khan, Md. Tajuddin & Agarwal, Shaily, 2015. "Is Indian agriculture becoming resilient to droughts? Evidence from rice production systems," Food Policy, Elsevier, vol. 56(C), pages 1-12.
    13. Pourzand, Farnaz & Noy, Ilan & Sağlam, Yiğit, 2019. "Droughts and farms’ financial performance in New Zealand: A micro farm level study," Working Paper Series 8159, Victoria University of Wellington, School of Economics and Finance.
    14. Xiao-jun Wang & Jian-yun Zhang & Juan Gao & Shamsuddin Shahid & Xing-hui Xia & Zhi Geng & Li Tang, 2018. "The new concept of water resources management in China: ensuring water security in changing environment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 897-909, April.
    15. Athar Kamal & Sami G. Al-Ghamdi & Muammer Koç, 2021. "Assessing the Impact of Water Efficiency Policies on Qatar’s Electricity and Water Sectors," Energies, MDPI, vol. 14(14), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5176-:d:269358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.