A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Croitoru, Cristiana & Nastase, Ilinca & Bode, Florin & Meslem, Amina & Dogeanu, Angel, 2015. "Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 304-318.
- Uğursal, Ahmet & Culp, Charles H., 2013. "The effect of temperature, metabolic rate and dynamic localized airflow on thermal comfort," Applied Energy, Elsevier, vol. 111(C), pages 64-73.
- Mao, Ning & Pan, Dongmei & Song, Mengjie & Li, Zhao & Xu, Yingjie & Deng, Shiming, 2017. "Operating optimization for improved energy consumption of a TAC system affected by nighttime thermal loads of building envelopes," Energy, Elsevier, vol. 133(C), pages 491-501.
- Oh, Myoung Su & Ahn, Jae Hwan & Kim, Dong Woo & Jang, Dong Soo & Kim, Yongchan, 2014. "Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system," Applied Energy, Elsevier, vol. 133(C), pages 14-21.
- Shao, Xiaoliang & Li, Xianting, 2015. "Evaluating the potential of airflow patterns to maintain a non-uniform indoor environment," Renewable Energy, Elsevier, vol. 73(C), pages 99-108.
- Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ana Tejero-González & Paula M. Esquivias, 2019. "Personalized Evaporative Cooler to Reduce Energy Consumption and Improve Thermal Comfort in Free-Running Spaces," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
- Ren, Jing & Liu, Jiying & Zhou, Shiyu & Kim, Moon Keun & Song, Shoujie, 2022. "Experimental study on control strategies of radiant floor cooling system with direct-ground cooling source and displacement ventilation system: A case study in an office building," Energy, Elsevier, vol. 239(PD).
- Jiying Liu & Mohammad Heidarinejad & Saber Khoshdel Nikkho & Nicholas W. Mattise & Jelena Srebric, 2019. "Quantifying Impacts of Urban Microclimate on a Building Energy Consumption—A Case Study," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
- Mohammad Al-Rawi & Ahmed M. Al-Jumaily & Annette Lazonby, 2022. "Did You Just Cough? Visualization of Vapor Diffusion in an Office Using Computational Fluid Dynamics Analysis," IJERPH, MDPI, vol. 19(16), pages 1-17, August.
- Daoru Liu & Zhigang Ren & Shen Wei & Zhe Song & Peipeng Li & Xin Chen, 2019. "Investigations on the Winter Thermal Environment of Bedrooms in Zhongxiang: A Case Study in Rural Areas in Hot Summer and Cold Winter Region of China," Sustainability, MDPI, vol. 11(17), pages 1-25, August.
- Xiaoshu Lü & Tao Lu & Tong Yang & Heidi Salonen & Zhenxue Dai & Peter Droege & Hongbing Chen, 2021. "Improving the Energy Efficiency of Buildings Based on Fluid Dynamics Models: A Critical Review," Energies, MDPI, vol. 14(17), pages 1-23, August.
- Kalmár, Tünde & Szodrai, Ferenc & Kalmár, Ferenc, 2022. "Experimental study of local effectiveness in the case of balanced mechanical ventilation in small offices," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xiaolong & Xie, Changjun & Quan, Shuhai & Huang, Liang & Fang, Wei, 2018. "Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system," Applied Energy, Elsevier, vol. 231(C), pages 887-900.
- Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
- Zheng, Chenxiao & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Ye, Tianzheng & Liu, Zeqin, 2018. "Comparison of air-conditioning systems with bottom-supply and side-supply modes in a typical office room," Applied Energy, Elsevier, vol. 227(C), pages 304-311.
- Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
- Lazaros Mavromatidis, 2022. "Constructal Evaluation of Polynomial Meta-Models for Dynamic Thermal Absorptivity Forecasting for Mixed-Mode nZEB Heritage Building Applications," Energies, MDPI, vol. 16(1), pages 1-26, December.
- Tatchell-Evans, Morgan & Kapur, Nik & Summers, Jonathan & Thompson, Harvey & Oldham, Dan, 2017. "An experimental and theoretical investigation of the extent of bypass air within data centres employing aisle containment, and its impact on power consumption," Applied Energy, Elsevier, vol. 186(P3), pages 457-469.
- Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
- Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
- Haibo Wu & Xingwang Tang & Sichuan Xu & Jiangbin Zhou, 2022. "Research on Energy Saving of PHEV Air Conditioning System Based on Reducing Air Backflow in Underhood," Energies, MDPI, vol. 15(9), pages 1-15, April.
- Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
- Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
- Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
- Łukasz J. Orman & Grzegorz Majewski & Norbert Radek & Jacek Pietraszek, 2022. "Analysis of Thermal Comfort in Intelligent and Traditional Buildings," Energies, MDPI, vol. 15(18), pages 1-25, September.
- Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
- Yingdong He & Nianping Li & Xiang Wang & Meiling He & De He, 2017. "Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study," IJERPH, MDPI, vol. 14(11), pages 1-26, November.
- Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
- Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
- Darowicki, K. & Janicka, E. & Mielniczek, M. & Zielinski, A. & Gawel, L. & Mitzel, J. & Hunger, J., 2019. "The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
- Nishant Raj Kapoor & Ashok Kumar & Tabish Alam & Anuj Kumar & Kishor S. Kulkarni & Paolo Blecich, 2021. "A Review on Indoor Environment Quality of Indian School Classrooms," Sustainability, MDPI, vol. 13(21), pages 1-43, October.
More about this item
Keywords
computational fluid dynamics (CFD); personalized ventilation (PV); computational thermal manikin (CTM); inhaled air quality; thermal comfort; energy saving;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4166-:d:254029. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.