IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v227y2018icp304-311.html
   My bibliography  Save this article

Comparison of air-conditioning systems with bottom-supply and side-supply modes in a typical office room

Author

Listed:
  • Zheng, Chenxiao
  • You, Shijun
  • Zhang, Huan
  • Zheng, Wandong
  • Zheng, Xuejing
  • Ye, Tianzheng
  • Liu, Zeqin

Abstract

The growing energy consumption and thermal comfort of an air-conditioned room have attracted increasing public attention. As such, the performance of air-conditioning systems with two air supply modes for a simplified office room was studied by numerical simulation and physical experiment. An experimental investigation was developed in an environmental chamber to validate the simulation model. Numerical investigation was carried out subsequently for an office setting by the validated CFD model. The indoor thermal environment, human thermal comfort and energy utilization efficiency of two air supply modes were analyzed and compared in this study. The results showed that under both air supply modes, thermal stratification occurred in the model room, and the air flow velocity in the occupied zone was low. In addition, the results indicated that under 21°C supply temperature, the air-conditioning system with bottom-supply mode provided better indoor thermal comfort of the occupied zone, but the energy consumption was higher than the side-supply mode.

Suggested Citation

  • Zheng, Chenxiao & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Ye, Tianzheng & Liu, Zeqin, 2018. "Comparison of air-conditioning systems with bottom-supply and side-supply modes in a typical office room," Applied Energy, Elsevier, vol. 227(C), pages 304-311.
  • Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:304-311
    DOI: 10.1016/j.apenergy.2017.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahzad, Sally & Brennan, John & Theodossopoulos, Dimitris & Hughes, Ben & Calautit, John Kaiser, 2017. "Energy and comfort in contemporary open plan and traditional personal offices," Applied Energy, Elsevier, vol. 185(P2), pages 1542-1555.
    2. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    3. Yao, Runming & Li, Baizhan & Steemers, Koen, 2005. "Energy policy and standard for built environment in China," Renewable Energy, Elsevier, vol. 30(13), pages 1973-1988.
    4. Uğursal, Ahmet & Culp, Charles H., 2013. "The effect of temperature, metabolic rate and dynamic localized airflow on thermal comfort," Applied Energy, Elsevier, vol. 111(C), pages 64-73.
    5. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
    6. Zhao, M. & Gu, Z.L. & Kang, W.B. & Liu, X. & Zhang, L.Y. & Jin, L.W. & Zhang, Q.L., 2017. "Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source," Applied Energy, Elsevier, vol. 185(P2), pages 2094-2105.
    7. Chowdhury, Ashfaque Ahmed & Rasul, M.G. & Khan, M.M.K., 2008. "Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate," Applied Energy, Elsevier, vol. 85(6), pages 449-462, June.
    8. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    2. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    3. Yat Huang Yau & Umair Ahmed Rajput & Altaf Hussain Rajpar & Natalia Lastovets, 2022. "Effects of Air Supply Terminal Devices on the Performance of Variable Refrigerant Flow Integrated Stratum Ventilation System: An Experimental Study," Energies, MDPI, vol. 15(4), pages 1-23, February.
    4. Guillermo Efren Ovando-Chacon & Sandy Luz Ovando-Chacon & Abelardo Rodríguez-León & Mario Díaz-González, 2023. "Numerical Study of Indoor Air Quality in a University Professor’s Office," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    5. Kong, Xiangfei & Xi, Chang & Li, Han & Lin, Zhang, 2020. "Multi-parameter performance optimization for whole year operation of stratum ventilation in offices," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    3. Zhang, Ning & Yin, Shao-You & Li, Min, 2018. "Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 228(C), pages 12-20.
    4. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    5. Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2016. "Design and development of advanced fuzzy logic controllers in smart buildings for institutional buildings in subtropical Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 738-744.
    6. Shahzad, Sally & Calautit, John Kaiser & Aquino, Angelo I. & Nasir, Diana S.N.M. & Hughes, Ben Richard, 2017. "A user-controlled thermal chair for an open plan workplace: CFD and field studies of thermal comfort performance," Applied Energy, Elsevier, vol. 207(C), pages 283-293.
    7. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    8. Jiying Liu & Shengwei Zhu & Moon Keun Kim & Jelena Srebric, 2019. "A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments," Sustainability, MDPI, vol. 11(15), pages 1-33, August.
    9. Wang, Yang & Zhao, Fu-Yun & Kuckelkorn, Jens & Spliethoff, Hartmut & Rank, Ernst, 2014. "School building energy performance and classroom air environment implemented with the heat recovery heat pump and displacement ventilation system," Applied Energy, Elsevier, vol. 114(C), pages 58-68.
    10. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    11. Liu, Wenling & Zhang, Jinyun & Bluemling, Bettina & Mol, Arthur P.J. & Wang, Can, 2015. "Public participation in energy saving retrofitting of residential buildings in China," Applied Energy, Elsevier, vol. 147(C), pages 287-296.
    12. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    13. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    14. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Hwang, Won-Baek & Choi, Sun & Lee, Dae-Young, 2017. "In-depth analysis of the performance of hybrid desiccant cooling system incorporated with an electric heat pump," Energy, Elsevier, vol. 118(C), pages 324-332.
    16. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    17. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    18. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
    19. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    20. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:304-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.