IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v133y2014icp14-21.html
   My bibliography  Save this article

Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system

Author

Listed:
  • Oh, Myoung Su
  • Ahn, Jae Hwan
  • Kim, Dong Woo
  • Jang, Dong Soo
  • Kim, Yongchan

Abstract

A localized air-conditioning system is expected to decrease energy consumption by avoiding extra cooling on the vacant seats. However, the energy saving of the localized air-conditioning system with satisfactory thermal comfort has seldom been quantified. In this study, both thermal comfort in the vehicle compartment and energy saving of the localized air-conditioning system with the front and ceiling vents were investigated. Thermal comfort in the vehicle compartment with the front and ceiling vents was analyzed using computational fluid dynamics with empirical correlations for thermal indices. In addition, the performance of the air-conditioning unit was measured at various air flow rates and air temperatures. The energy consumption of the localized air-conditioning system with the optimized front and ceiling vents decreased by 20.8% and 30.2%, respectively, against the baseline, while satisfying the neutral thermal comfort at the vent air temperature of 9°C.

Suggested Citation

  • Oh, Myoung Su & Ahn, Jae Hwan & Kim, Dong Woo & Jang, Dong Soo & Kim, Yongchan, 2014. "Thermal comfort and energy saving in a vehicle compartment using a localized air-conditioning system," Applied Energy, Elsevier, vol. 133(C), pages 14-21.
  • Handle: RePEc:eee:appene:v:133:y:2014:i:c:p:14-21
    DOI: 10.1016/j.apenergy.2014.07.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, K. David & Tzeng, Sheng-Chung & Jeng, Tzer-Ming & Chiang, Wing-Ding, 2006. "Air-conditioning system of an intelligent vehicle-cabin," Applied Energy, Elsevier, vol. 83(6), pages 545-557, June.
    2. Fleming, Evan & Wen, Shaoyi & Shi, Li & da Silva, Alexandre K., 2013. "Thermodynamic model of a thermal storage air conditioning system with dynamic behavior," Applied Energy, Elsevier, vol. 112(C), pages 160-169.
    3. Sanaye, Sepehr & Dehghandokht, Masoud & Fartaj, Amir, 2012. "Temperature control of a cabin in an automobile using thermal modeling and fuzzy controller," Applied Energy, Elsevier, vol. 97(C), pages 860-868.
    4. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    5. Manzela, André Aleixo & Hanriot, Sérgio Morais & Cabezas-Gómez, Luben & Sodré, José Ricardo, 2010. "Using engine exhaust gas as energy source for an absorption refrigeration system," Applied Energy, Elsevier, vol. 87(4), pages 1141-1148, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    2. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    3. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2017. "Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology," Applied Energy, Elsevier, vol. 193(C), pages 276-286.
    4. Tatchell-Evans, Morgan & Kapur, Nik & Summers, Jonathan & Thompson, Harvey & Oldham, Dan, 2017. "An experimental and theoretical investigation of the extent of bypass air within data centres employing aisle containment, and its impact on power consumption," Applied Energy, Elsevier, vol. 186(P3), pages 457-469.
    5. Daniele Basciotti & Dominik Dvorak & Imre Gellai, 2020. "A Novel Methodology for Evaluating the Impact of Energy Efficiency Measures on the Cabin Thermal Comfort of Electric Vehicles," Energies, MDPI, vol. 13(15), pages 1-16, July.
    6. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    7. Li, Xiaolong & Xie, Changjun & Quan, Shuhai & Huang, Liang & Fang, Wei, 2018. "Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system," Applied Energy, Elsevier, vol. 231(C), pages 887-900.
    8. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    9. Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
    10. Sina Shojaei & Andrew McGordon & Simon Robinson & James Marco, 2017. "Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling," Energies, MDPI, vol. 10(12), pages 1-28, December.
    11. Yingdong He & Nianping Li & Xiang Wang & Meiling He & De He, 2017. "Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study," IJERPH, MDPI, vol. 14(11), pages 1-26, November.
    12. Jiying Liu & Shengwei Zhu & Moon Keun Kim & Jelena Srebric, 2019. "A Review of CFD Analysis Methods for Personalized Ventilation (PV) in Indoor Built Environments," Sustainability, MDPI, vol. 11(15), pages 1-33, August.
    13. Haibo Wu & Xingwang Tang & Sichuan Xu & Jiangbin Zhou, 2022. "Research on Energy Saving of PHEV Air Conditioning System Based on Reducing Air Backflow in Underhood," Energies, MDPI, vol. 15(9), pages 1-15, April.
    14. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    15. Heangwoo Lee, 2020. "A Basic Study on the Performance Evaluation of a Movable Light Shelf with a Rolling Reflector That Can Change Reflectivity to Improve the Visual Environment," IJERPH, MDPI, vol. 17(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahman, Ammar & Rosario, Luis & Rahman, Muhammad M., 2012. "Analysis of energy savings in a supermarket refrigeration/HVAC system," Applied Energy, Elsevier, vol. 98(C), pages 11-21.
    2. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    3. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    4. Jie, Ji & Jingyong, Cai & Wenzhu, Huang & Yan, Feng, 2015. "Experimental study on the performance of solar-assisted multi-functional heat pump based on enthalpy difference lab with solar simulator," Renewable Energy, Elsevier, vol. 75(C), pages 381-388.
    5. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    6. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    7. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    8. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    9. Giovanni Murano & Francesca Caffari & Nicolandrea Calabrese, 2024. "Energy Potential of Existing Reversible Air-to-Air Heat Pumps for Residential Heating," Sustainability, MDPI, vol. 16(14), pages 1-23, July.
    10. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    11. Treichel, Calene & Cruickshank, Cynthia A., 2021. "Energy analysis of heat pump water heaters coupled with air-based solar thermal collectors in Canada and the United States," Energy, Elsevier, vol. 221(C).
    12. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    13. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    14. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    15. Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
    16. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    17. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    18. Yingdong He & Nianping Li & Xiang Wang & Meiling He & De He, 2017. "Comfort, Energy Efficiency and Adoption of Personal Cooling Systems in Warm Environments: A Field Experimental Study," IJERPH, MDPI, vol. 14(11), pages 1-26, November.
    19. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    20. Sichilalu, Sam & Mathaba, Tebello & Xia, Xiaohua, 2017. "Optimal control of a wind–PV-hybrid powered heat pump water heater," Applied Energy, Elsevier, vol. 185(P2), pages 1173-1184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:133:y:2014:i:c:p:14-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.