IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i6p584-d567032.html
   My bibliography  Save this article

Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China

Author

Listed:
  • Zaheer Abbas

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Guang Yang

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Yuanjun Zhong

    (Lands and Resource Department of Guangdong Province, Surveying and Mapping Institute, Guangzhou 510500, China)

  • Yaolong Zhao

    (School of Geography, South China Normal University, Guangzhou 510631, China)

Abstract

Land use land cover (LULC) transition analysis is a systematic approach that helps in understanding physical and human involvement in the natural environment and sustainable development. The study of the spatiotemporal shifting pattern of LULC, the simulation of future scenarios and the intensity analysis at the interval, category and transition levels provide a comprehensive prospect to determine current and future development scenarios. In this study, we used multitemporal remote sensing data from 1980–2020 with a 10-year interval, explanatory variables (Digital Elevation Model (DEM), slope, population, GDP, distance from roads, distance from the city center and distance from streams) and an integrated CA-ANN approach within the MOLUSCE plugin of QGIS to model the spatiotemporal change transition potential and future LULC simulation in the Greater Bay Area. The results indicate that physical and socioeconomic driving factors have significant impacts on the landscape patterns. Over the last four decades, the study area experienced rapid urban expansion (4.75% to 14.75%), resulting in the loss of forest (53.49% to 50.57%), cropland (21.85% to 16.04%) and grassland (13.89% to 12.05%). The projected results (2030–2050) also endorse the increasing trend in built-up area, forest, and water at the cost of substantial amounts of cropland and grassland.

Suggested Citation

  • Zaheer Abbas & Guang Yang & Yuanjun Zhong & Yaolong Zhao, 2021. "Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China," Land, MDPI, vol. 10(6), pages 1-26, June.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:584-:d:567032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/6/584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/6/584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xin & Zheng, Xin-Qi & Lv, Li-Na, 2012. "A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata," Ecological Modelling, Elsevier, vol. 233(C), pages 11-19.
    2. Shiqiang Du & Peijun Shi & Anton Van Rompaey, 2013. "The Relationship between Urban Sprawl and Farmland Displacement in the Pearl River Delta, China," Land, MDPI, vol. 3(1), pages 1-18, December.
    3. Chen Liping & Sun Yujun & Sajjad Saeed, 2018. "Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    4. Karen C. Seto & Robert K. Kaufmann, 2003. "Modeling the Drivers of Urban Land Use Change in the Pearl River Delta, China: Integrating Remote Sensing with Socioeconomic Data," Land Economics, University of Wisconsin Press, vol. 79(1), pages 106-121.
    5. Huiran Han & Chengfeng Yang & Jinping Song, 2015. "Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    6. Ruci Wang & Ahmed Derdouri & Yuji Murayama, 2018. "Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    7. Qihao Weng, 1998. "Local Impacts of the Post‐Mao Development Strategy: The Case of the Zhujiang Delta, Southern China," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 22(3), pages 425-442, September.
    8. Dina Statuto & Giuseppe Cillis & Pietro Picuno, 2017. "Using Historical Maps within a GIS to Analyze Two Centuries of Rural Landscape Changes in Southern Italy," Land, MDPI, vol. 6(3), pages 1-15, September.
    9. Qing Yang & Yang Ding & Bauke De Vries & Qi Han & Huimin Ma, 2014. "Assessing Regional Sustainability Using a Model of Coordinated Development Index: A Case Study of Mainland China," Sustainability, MDPI, vol. 6(12), pages 1-23, December.
    10. Sonam Wangyel Wang & Belay Manjur Gebru & Munkhnasan Lamchin & Rijan Bhakta Kayastha & Woo-Kyun Lee, 2020. "Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    11. Muhammad Hadi Saputra & Han Soo Lee, 2019. "Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rizwan Muhammad & Wenyin Zhang & Zaheer Abbas & Feng Guo & Luc Gwiazdzinski, 2022. "Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China," Land, MDPI, vol. 11(3), pages 1-24, March.
    2. Juliana Mio de Souza & Paulo Morgado & Eduarda Marques da Costa & Luiz Fernando de Novaes Vianna, 2022. "Modeling of Land Use and Land Cover (LULC) Change Based on Artificial Neural Networks for the Chapecó River Ecological Corridor, Santa Catarina/Brazil," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    3. Chunliu Gao & Deqiang Cheng & Javed Iqbal & Shunyu Yao, 2023. "Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards," Land, MDPI, vol. 12(2), pages 1-24, January.
    4. Arathy Nair Geetha Raveendran Nair & Shamla Dilama Shamsudeen & Meera Geetha Mohan & Adarsh Sankaran, 2023. "Basin-Scale Streamflow Projections for Greater Pamba River Basin, India Integrating GCM Ensemble Modelling and Flow Accumulation-Weighted LULC Overlay in Deep Learning Environment," Sustainability, MDPI, vol. 15(19), pages 1-27, September.
    5. Bhatia, Samarth Y. & Gadiya, Kirtesh & Patil, Gopal R. & Krishna Mohan, Buddhiraju, 2024. "Thresholding-based cellular automata for transportation network derived future urban growth patterns in a peri-urban area," Transport Policy, Elsevier, vol. 148(C), pages 40-55.
    6. Jiangyun Li & Mingbao Chen, 2023. "Spatiotemporal Evolution and Influencing Factors of Social-Ecological System Vulnerability in the Guangdong–Hong Kong–Macau Greater Bay Area," Land, MDPI, vol. 12(4), pages 1-15, April.
    7. Saulo Folharini & António Vieira & António Bento-Gonçalves & Sara Silva & Tiago Marques & Jorge Novais, 2023. "A Framework Using Open-Source Software for Land Use Prediction and Climate Data Time Series Analysis in a Protected Area of Portugal: Alvão Natural Park," Land, MDPI, vol. 12(7), pages 1-16, June.
    8. Dimitrios Chouvardas & Maria Karatassiou & Afroditi Stergiou & Garyfallia Chrysanthopoulou, 2022. "Identifying the Spatiotemporal Transitions and Future Development of a Grazed Mediterranean Landscape of South Greece," Land, MDPI, vol. 11(12), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Hong Giang & Yu-Ren Wang & Tran Dinh Hieu & Nguyen Huu Ngu & Thanh-Tuan Dang, 2022. "Estimating Land-Use Change Using Machine Learning: A Case Study on Five Central Coastal Provinces of Vietnam," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    2. Cheechouyang Faichia & Zhijun Tong & Jiquan Zhang & Xingpeng Liu & Emmanuel Kazuva & Kashif Ullah & Bazel Al-Shaibah, 2020. "Using RS Data-Based CA–Markov Model for Dynamic Simulation of Historical and Future LUCC in Vientiane, Laos," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    3. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    4. Harik, G. & Alameddine, I. & Zurayk, R. & El-Fadel, M., 2023. "Uncertainty in forecasting land cover land use at a watershed scale: Towards enhanced sustainable land management," Ecological Modelling, Elsevier, vol. 486(C).
    5. Vitus Tankpa & Li Wang & Alfred Awotwi & Leelamber Singh & Samit Thapa & Raphael Ane Atanga & Xiaomeng Guo, 2021. "Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7883-7912, May.
    6. Bhanage Vinayak & Han Soo Lee & Shirishkumar Gedem, 2021. "Prediction of Land Use and Land Cover Changes in Mumbai City, India, Using Remote Sensing Data and a Multilayer Perceptron Neural Network-Based Markov Chain Model," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    7. Chunliu Gao & Deqiang Cheng & Javed Iqbal & Shunyu Yao, 2023. "Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards," Land, MDPI, vol. 12(2), pages 1-24, January.
    8. Xiuyan Zhao & Changhong Miao, 2022. "Spatial-Temporal Changes and Simulation of Land Use in Metropolitan Areas: A Case of the Zhengzhou Metropolitan Area, China," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    9. Pakawan Chotchaiwong & Saowanee Wijitkosum, 2019. "Predicting Urban Expansion and Urban Land Use Changes in Nakhon Ratchasima City Using a CA-Markov Model under Two Different Scenarios," Land, MDPI, vol. 8(9), pages 1-16, September.
    10. Ruci Wang & Hao Hou & Yuji Murayama, 2018. "Scenario-Based Simulation of Tianjin City Using a Cellular Automata–Markov Model," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    11. Auwalu Faisal Koko & Wu Yue & Ghali Abdullahi Abubakar & Roknisadeh Hamed & Akram Ahmed Noman Alabsi, 2020. "Monitoring and Predicting Spatio-Temporal Land Use/Land Cover Changes in Zaria City, Nigeria, through an Integrated Cellular Automata and Markov Chain Model (CA-Markov)," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    12. Sonam Wangyel Wang & Belay Manjur Gebru & Munkhnasan Lamchin & Rijan Bhakta Kayastha & Woo-Kyun Lee, 2020. "Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    13. Honglei Jiang & Xia Xu & Mengxi Guan & Lingfei Wang & Yongmei Huang & Yinghui Liu, 2019. "Simulation of Spatiotemporal Land Use Changes for Integrated Model of Socioeconomic and Ecological Processes in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    14. Chau, Nancy H. & Qin, Yu & Zhang, Weiwen, 2015. "Networked Leaders in the Shadow of the Market – A Chinese Experiment in Allocating Land Conversion Rights," Working Papers 250022, Cornell University, Department of Applied Economics and Management.
    15. Wang, Han & Tian, Fuan & Wu, Jianxian & Nie, Xin, 2023. "Is China forest landscape restoration (FLR) worth it? A cost-benefit analysis and non-equilibrium ecological view," World Development, Elsevier, vol. 161(C).
    16. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    17. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    18. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    19. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    20. Salvatore Di Fazio & Giuseppe Modica, 2018. "Historic Rural Landscapes: Sustainable Planning Strategies and Action Criteria. The Italian Experience in the Global and European Context," Sustainability, MDPI, vol. 10(11), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:584-:d:567032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.