IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1786-d113932.html
   My bibliography  Save this article

Integrating Cellular Automata with the Deep Belief Network for Simulating Urban Growth

Author

Listed:
  • Ye Zhou

    (School of Earth Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China)

  • Feng Zhang

    (School of Earth Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
    Zhejiang Provincial Key Laboratory of Geographic Information Science, 148 Tianmushan Road, Hangzhou 310028, China)

  • Zhenhong Du

    (School of Earth Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
    Zhejiang Provincial Key Laboratory of Geographic Information Science, 148 Tianmushan Road, Hangzhou 310028, China)

  • Xinyue Ye

    (Department of Geography, Kent State University, Kent, OH 44240, USA)

  • Renyi Liu

    (School of Earth Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
    Zhejiang Provincial Key Laboratory of Geographic Information Science, 148 Tianmushan Road, Hangzhou 310028, China)

Abstract

Sustainable urban development is a focus of regional policy makers; therefore, how to measure and understand urban growth is an important research topic. This paper quantified the amount of urban growth on land use maps that were derived from multi-temporal Landsat images of Jiaxing City as a rapidly-growing city in Zhejiang Province from 2000–2015. Furthermore, a new approach coupled the heuristic bat algorithm (BA) and deep belief network (DBN) with the cellular automata (CA) model (DBN-CA), which was developed to simulate the urban expansion in 2015 and forecast the distribution of urban areas of Jiaxing City in 2024. The BA was proposed to obtain the best structure of the DBN, while the optimized DBN model considered the nonlinear spatial-temporal relationship of driving forces in urban expansion. Comparisons between the DBN-CA and the conventional artificial neural network-based CA (ANN-CA) model were also performed. This study demonstrates that the proposed model is more stable and accurate than the ANN-CA model, since the minimum and maximum values of the kappa coefficient of the DBN-CA were 77.109% and 78.366%, while the ANN-CA’s values were 63.460% and 76.151% over the 200 experiments, respectively. Therefore, the DBN-CA model is a potentially effective new approach to survey land use change and urban expansion and allows sustainability research to study the health of urban growth trends.

Suggested Citation

  • Ye Zhou & Feng Zhang & Zhenhong Du & Xinyue Ye & Renyi Liu, 2017. "Integrating Cellular Automata with the Deep Belief Network for Simulating Urban Growth," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1786-:d:113932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K C Clarke & S Hoppen & L Gaydos, 1997. "A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area," Environment and Planning B, , vol. 24(2), pages 247-261, April.
    2. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    3. F Wu & C J Webster, 1998. "Simulation of Land Development through the Integration of Cellular Automata and Multicriteria Evaluation," Environment and Planning B, , vol. 25(1), pages 103-126, February.
    4. Han Li & Ye Hua Dennis Wei & Zhiji Huang, 2014. "Urban Land Expansion and Spatial Dynamics in Globalizing Shanghai," Sustainability, MDPI, vol. 6(12), pages 1-20, December.
    5. Chudech Losiri & Masahiko Nagai & Sarawut Ninsawat & Rajendra P. Shrestha, 2016. "Modeling Urban Expansion in Bangkok Metropolitan Region Using Demographic–Economic Data through Cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain Models," Sustainability, MDPI, vol. 8(7), pages 1-23, July.
    6. M Batty & Y Xie, 1994. "From Cells to Cities," Environment and Planning B, , vol. 21(7), pages 31-48, December.
    7. Rasmussen, Laura Vang & Rasmussen, Kjeld & Reenberg, Anette & Proud, Simon, 2012. "A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel," Agricultural Systems, Elsevier, vol. 107(C), pages 56-64.
    8. Anthony S. CLARK, 2010. "The Political Institutional Determinants Of Land-Use Change And Sprawl: A Conceptual Model," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 5(7(16)), pages 5-18, August.
    9. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaixuan Dai & Shi Shen & Changxiu Cheng & Sijing Ye & Peichao Gao, 2020. "Trade-Off Relationship of Arable and Ecological Land in Urban Growth When Altering Urban Form: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 12(23), pages 1-20, December.
    2. Linfeng Xu & Xuan Liu & De Tong & Zhixin Liu & Lirong Yin & Wenfeng Zheng, 2022. "Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model," Land, MDPI, vol. 11(5), pages 1-16, April.
    3. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    4. Cong Ou & Jianyu Yang & Zhenrong Du & Xin Zhang & Dehai Zhu, 2019. "Integrating Cellular Automata with Unsupervised Deep-Learning Algorithms: A Case Study of Urban-Sprawl Simulation in the Jingjintang Urban Agglomeration, China," Sustainability, MDPI, vol. 11(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Liu & Yongjiu Feng, 2016. "Simulating the Impact of Economic and Environmental Strategies on Future Urban Growth Scenarios in Ningbo, China," Sustainability, MDPI, vol. 8(10), pages 1-16, October.
    2. Liu, Xiaoping & Li, Xia & Shi, Xun & Wu, Shaokun & Liu, Tao, 2008. "Simulating complex urban development using kernel-based non-linear cellular automata," Ecological Modelling, Elsevier, vol. 211(1), pages 169-181.
    3. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    4. Tian, Guangjin & Ouyang, Yun & Quan, Quan & Wu, Jianguo, 2011. "Simulating spatiotemporal dynamics of urbanization with multi-agent systems—A case study of the Phoenix metropolitan region, USA," Ecological Modelling, Elsevier, vol. 222(5), pages 1129-1138.
    5. Cong Cao & Suzana Dragićević & Songnian Li, 2019. "Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    6. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    7. Eda Ustaoglu & Brendan Williams & Laura O. Petrov & Harutyun Shahumyan & Hedwig Van Delden, 2017. "Developing and Assessing Alternative Land-Use Scenarios from the MOLAND Model: A Scenario-Based Impact Analysis Approach for the Evaluation of Rapid Rail Provisions and Urban Development in the Greate," Sustainability, MDPI, vol. 10(1), pages 1-34, December.
    8. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    9. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin, 2020. "Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata," Ecological Modelling, Elsevier, vol. 417(C).
    10. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin & Zhang, Chunxiao & Li, Jiayang & Lv, Yongqiang, 2018. "Interoperable scenario simulation of land-use policy for Beijing–Tianjin–Hebei region, China," Land Use Policy, Elsevier, vol. 75(C), pages 155-165.
    11. repec:grz:wpaper:2013-06 is not listed on IDEAS
    12. Muhammad Hadi Saputra & Han Soo Lee, 2019. "Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
    13. Yishao Shi & Jie Wu & Shouzheng Shi, 2017. "Study of the Simulated Expansion Boundary of Construction Land in Shanghai Based on a SLEUTH Model," Sustainability, MDPI, vol. 9(6), pages 1-15, May.
    14. Nij Tontisirin & Sutee Anantsuksomsri, 2021. "Economic Development Policies and Land Use Changes in Thailand: From the Eastern Seaboard to the Eastern Economic Corridor," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    15. Yang, Xin & Zheng, Xin-Qi & Lv, Li-Na, 2012. "A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata," Ecological Modelling, Elsevier, vol. 233(C), pages 11-19.
    16. Yilun Liu & Yueming Hu & Shaoqiu Long & Luo Liu & Xiaoping Liu, 2017. "Analysis of the Effectiveness of Urban Land-Use-Change Models Based on the Measurement of Spatio-Temporal, Dynamic Urban Growth: A Cellular Automata Case Study," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    17. Kwok Hung Lau & Booi Hon Kam, 2005. "A Cellular Automata Model for Urban Land-Use Simulation," Environment and Planning B, , vol. 32(2), pages 247-263, April.
    18. José I Barredo & Luca Demicheli & Carlo Lavalle & Marjo Kasanko & Niall McCormick, 2004. "Modelling Future Urban Scenarios in Developing Countries: An Application Case Study in Lagos, Nigeria," Environment and Planning B, , vol. 31(1), pages 65-84, February.
    19. Caruso, Geoffrey & Peeters, Dominique & Cavailhes, Jean & Rounsevell, Mark, 2007. "Spatial configurations in a periurban city. A cellular automata-based microeconomic model," Regional Science and Urban Economics, Elsevier, vol. 37(5), pages 542-567, September.
    20. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    21. Giovanni A. Rabino & Lorenzo Papini & Silvana T. Lombardo & Antonio Colonna & Vittorio Di Stefano, 1998. "L.A.U.D.E: Learning Automata for Urban Development Exploration. The Case Study of Rome Urban System," ERSA conference papers ersa98p302, European Regional Science Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1786-:d:113932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.