IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3246-d169144.html
   My bibliography  Save this article

Development of SWAT-Paddy for Simulating Lowland Paddy Fields

Author

Listed:
  • Ryota Tsuchiya

    (The Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
    Institute for Rural Engineering, NARO, 2-1-6 Kannondai, Tsukuba, Ibaraki 305-8609, Japan)

  • Tasuku Kato

    (Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan)

  • Jaehak Jeong

    (Blackland Research and Extension Center, Texas A&M AgriLife Research, 720 East Blackland Road, Temple, TX 76502, USA)

  • Jeffrey G. Arnold

    (Grassland Soil and Water Research Laboratory, USDA-ARS, 808 East Blackland Road, Temple, TX 76502, USA)

Abstract

The recent increase in global consumption of rice has led to increased demand for sustainable water management in paddy cultivation. In this study, we propose an enhanced paddy simulation module to be introduced to Soil and Water Assessment Tool (SWAT) to evaluate the sustainability of paddy cultivation. The enhancements added to SWAT include: (1) modification of water balance calculation for impounded fields, (2) addition of an irrigation management option for paddy fields that are characterized by flood irrigation with target water depth, and (3) addition of a puddling operation that influences the water quality and infiltration rate of the top soil layer. In a case study, the enhanced model, entitled SWAT-Paddy, was applied to an agricultural watershed in Japan. The results showed that the SWAT-Paddy successfully represented paddy cultivation, water management, and discharge processes. Simulated daily discharge rates with SWAT-Paddy (R 2 = 0.8) were superior to the SWAT result (R 2 = 0.002). SWAT-Paddy allows the simulation of paddy management processes realistically, and thus can enhance model accuracy in paddy-dominant agricultural watersheds.

Suggested Citation

  • Ryota Tsuchiya & Tasuku Kato & Jaehak Jeong & Jeffrey G. Arnold, 2018. "Development of SWAT-Paddy for Simulating Lowland Paddy Fields," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3246-:d:169144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.
    2. Anbumozhi, V. & Yamaji, E. & Tabuchi, T., 1998. "Rice crop growth and yield as influenced by changes in ponding water depth, water regime and fertigation level," Agricultural Water Management, Elsevier, vol. 37(3), pages 241-253, September.
    3. Vu, Son Hong & Watanabe, Hirozumi & Takagi, Kazuhiro, 2005. "Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan," Agricultural Water Management, Elsevier, vol. 76(3), pages 195-210, August.
    4. Gassman, Philip W. & Reyes, Manuel R. & Green, Colleen H. & Arnold, Jeffrey G., 2007. "The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions," ISU General Staff Papers 200701010800001027, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debanjali Saha & Kazuo Oki & Koshi Yoshida & Naota Hanasaki & Hideaki Kamiya, 2023. "Impact of Paddy Field Reservoirs on Flood Management in a Large River Basin of Japan," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Guangwen Shao & Danrong Zhang & Yiqing Guan & Yuebo Xie & Feng Huang, 2019. "Application of SWAT Model with a Modified Groundwater Module to the Semi-Arid Hailiutu River Catchment, Northwest China," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    3. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    2. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    3. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    4. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    5. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    6. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    7. Negar Tayebzadeh Moghadam & Karim C. Abbaspour & Bahram Malekmohammadi & Mario Schirmer & Ahmad Reza Yavari, 2021. "Spatiotemporal Modelling of Water Balance Components in Response to Climate and Landuse Changes in a Heterogeneous Mountainous Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 793-810, February.
    8. Yates, Andrew J. & Doyle, Martin W. & Rigby, J.R. & Schnier, Kurt E., 2013. "Market power, private information, and the optimal scale of pollution permit markets with application to North Carolina's Neuse River," Resource and Energy Economics, Elsevier, vol. 35(3), pages 256-276.
    9. Eini, Mohammad Reza & Salmani, Haniyeh & Piniewski, Mikołaj, 2023. "Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    11. S. K. Aryal & S. Ashbolt & B. S. McIntosh & K. P. Petrone & S. Maheepala & R. K. Chowdhury & T. Gardener & R. Gardiner, 2016. "Assessing and Mitigating the Hydrological Impacts of Urbanisation in Semi-Urban Catchments Using the Storm Water Management Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5437-5454, November.
    12. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    13. Kotchakarn Nantasaksiri & Patcharawat Charoen-Amornkitt & Takashi Machimura, 2021. "Land Potential Assessment of Napier Grass Plantation for Power Generation in Thailand Using SWAT Model. Model Validation and Parameter Calibration," Energies, MDPI, vol. 14(5), pages 1-15, March.
    14. Howard, Gregory E. & Zhang, Wendong & Valcu-Lisman, Adriana M., 2021. "Evaluating the Efficiency-Participation Tradeoff in Agricultural Conservation Programs: The Effect of Reverse Auctions, Spatial Targeting, and Higher Offered Payments," 2021 Annual Meeting, August 1-3, Austin, Texas 313926, Agricultural and Applied Economics Association.
    15. Kondo, Kei & Boulange, Julien & Hiramatsu, Kazuaki & Thai, Phong K. & Inoue, Tsuyoshi & Watanabe, Hirozumi, 2017. "Development and application of a dynamic in-river agrochemical fate and transport model for simulating behavior of rice herbicide in urbanizing catchment," Agricultural Water Management, Elsevier, vol. 193(C), pages 102-115.
    16. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    17. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    18. Darren Ficklin & Iris Stewart & Edwin Maurer, 2013. "Effects of projected climate change on the hydrology in the Mono Lake Basin, California," Climatic Change, Springer, vol. 116(1), pages 111-131, January.
    19. Roy Brouwer & Rute Pinto & Jorge Garcia‐Hernandez & Xingtong Li & Merrin Macrae & Predrag Rajsic & Wanhong Yang & Yongbo Liu & Mark Anderson & Louise Heyming, 2023. "Spatial optimization of nutrient reduction measures on agricultural land to improve water quality: A coupled modeling approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(3-4), pages 329-353, September.
    20. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3246-:d:169144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.