IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p709-d134871.html
   My bibliography  Save this article

How Can Big Data Complement Expert Analysis? A Value Chain Case Study

Author

Listed:
  • Kyungtae Kim

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, 164 Suwon, Korea)

  • Sungjoo Lee

    (Department of Industrial Engineering, Ajou University, 164 Suwon, Korea)

Abstract

In the world of big data, there is a need to investigate how data-driven approaches can support expert-based analyses during a technology planning process. To meet this goal, we examined opportunities and challenges for big data analytics in the social sciences, particularly with respect to value chain analysis. To accomplish this, we designed a value chain mapping experiment that aimed to compare the results of expert-based and data-based mappings. In the expert-based approach, we asked an industry expert to visually depict an industry value chain based on insights and collected data. We also reviewed a previously published value chain developed by a panel of industry experts during a national technology planning process. In the data-driven analysis, we used a massive number of business transaction records between companies under the assumption that the data would be useful in identifying relationships between items in a value chain. The case study results demonstrated that data-driven analysis can help researchers understand the current status of industry structures, enabling them to develop more realistic, although less flexible value chain maps. This approach is expected to provide more value when used in combination with other databases. It is important to note that significant effort is required to develop an elaborate analysis algorithm, and data preprocessing is essential for obtaining meaningful results, both of which make this approach challenging. Experts’ insights are still helpful for validating the analytic results in value chain mapping.

Suggested Citation

  • Kyungtae Kim & Sungjoo Lee, 2018. "How Can Big Data Complement Expert Analysis? A Value Chain Case Study," Sustainability, MDPI, vol. 10(3), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:709-:d:134871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David C. Mowery & Jeffrey T. Macher, 2001. "E-Commerce and the Semiconductor Industry Value Chain: Implications for Vertical Specialization and Integrated Semiconductor Manufacturers," Economics Study Area Working Papers 17, East-West Center, Economics Study Area.
    2. Irvine, Richard M., 2015. "A conceptual study of value chain analysis as a tool for assessing a veterinary surveillance system for poultry in Great Britain," Agricultural Systems, Elsevier, vol. 135(C), pages 143-158.
    3. Lee, Mingook & Lee, Sungjoo, 2017. "Identifying new business opportunities from competitor intelligence: An integrated use of patent and trademark databases," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 170-183.
    4. Ernst, Holger, 2003. "Patent information for strategic technology management," World Patent Information, Elsevier, vol. 25(3), pages 233-242, September.
    5. Yongtae Park & Sungjoo Lee & Sora Lee, 2012. "Patent analysis for promoting technology transfer in multi-technology industries: the Korean aerospace industry case," The Journal of Technology Transfer, Springer, vol. 37(3), pages 355-374, June.
    6. Kim, Jeeeun & Lee, Sungjoo, 2015. "Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 332-345.
    7. Kwok Tai Chui & Wadee Alhalabi & Sally Shuk Han Pang & Patricia Ordóñez de Pablos & Ryan Wen Liu & Mingbo Zhao, 2017. "Disease Diagnosis in Smart Healthcare: Innovation, Technologies and Applications," Sustainability, MDPI, vol. 9(12), pages 1-23, December.
    8. Peppard, Joe & Rylander, Anna, 0. "From Value Chain to Value Network:: Insights for Mobile Operators," European Management Journal, Elsevier, vol. 24(2-3), pages 128-141, April.
    9. Weng-Kun Liu & Chia-Chun Yen, 2016. "Optimizing Bus Passenger Complaint Service through Big Data Analysis: Systematized Analysis for Improved Public Sector Management," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Russell Tatenda Munodawafa & Satirenjit Kaur Johl, 2019. "Big Data Analytics Capabilities and Eco-Innovation: A Study of Energy Companies," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    2. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    3. Jing Yu & Jicheng Liu & Jiakang Sun & Mengyu Shi, 2023. "Evolutionary Game of Digital-Driven Photovoltaic–Storage–Use Value Chain Collaboration: A Value Intelligence Creation Perspective," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    4. Michela Arnaboldi, 2018. "The Missing Variable in Big Data for Social Sciences: The Decision-Maker," Sustainability, MDPI, vol. 10(10), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
    2. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    3. Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
    4. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
    5. Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    6. Donghyun Choi & Bomi Song, 2018. "Exploring Technological Trends in Logistics: Topic Modeling-Based Patent Analysis," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    7. Ardito, Lorenzo & Ernst, Holger & Messeni Petruzzelli, Antonio, 2020. "The interplay between technology characteristics, R&D internationalisation, and new product introduction: Empirical evidence from the energy conservation sector," Technovation, Elsevier, vol. 96.
    8. Katia Angue & Cécile Ayerbe & Liliana Mitkova, 2014. "A method using two dimensions of the patent classification for measuring the technological proximity: an application in identifying a potential R&D partner in biotechnology," The Journal of Technology Transfer, Springer, vol. 39(5), pages 716-747, October.
    9. Mario Corona & Youngjung Geum & Sungjoo Lee, 2017. "Patterns of Protecting Both Technological and Nontechnological Innovation for Service Offerings: Case of the Video-Game Industry," Service Science, INFORMS, vol. 9(3), pages 192-204, September.
    10. Youngjae Choi & Sanghyun Park & Sungjoo Lee, 2021. "Identifying emerging technologies to envision a future innovation ecosystem: A machine learning approach to patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5431-5476, July.
    11. Eunsuk Chun & Sungchan Jun & Chulung Lee, 2021. "Identification of Promising Smart Farm Technologies and Development of Technology Roadmap Using Patent Map Analysis," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    12. Song, Kisik & Kim, Karp Soo & Lee, Sungjoo, 2017. "Discovering new technology opportunities based on patents: Text-mining and F-term analysis," Technovation, Elsevier, vol. 60, pages 1-14.
    13. Claude Paraponaris, 2017. "Plateformes numériques, conception ouverte et emploi," Post-Print halshs-01614430, HAL.
    14. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    15. Ehrenhard, Michel & Kijl, Bjorn & Nieuwenhuis, Lambert, 2014. "Market adoption barriers of multi-stakeholder technology: Smart homes for the aging population," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 306-315.
    16. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    17. Su, Hsin-Ning, 2017. "Collaborative and Legal Dynamics of International R&D- Evolving Patterns in East Asia," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 217-227.
    18. Laya, Andrés & Sundquist, Mårten & Markendahl, Jan, 2015. "Motivation, Regulation And Actor Constellations - Experiences From A Multidisciplinary Research Project On Health And Wellbeing As Part Of The Internet Of Things," 26th European Regional ITS Conference, Madrid 2015 127160, International Telecommunications Society (ITS).
    19. JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    20. Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:709-:d:134871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.