IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4495-d259032.html
   My bibliography  Save this article

Collective Intelligence: An Emerging World in Open Innovation

Author

Listed:
  • JinHyo Joseph Yun

    (Department of Open Innovation, Open Innovation Academy of SOItmC, Daegu Gyeongbuk Science and Technology Institute (DGIST), Daegu 429888, Korea)

  • EuiSeob Jeong

    (Seoul Capital Area Branch, Korea Institute of Science and Technology Information (KISTI), Seoul 02456, Korea)

  • Xiaofei Zhao

    (Department of Open Innovation, Open Innovation Academy of SOItmC, Daegu Gyeongbuk Science and Technology Institute (DGIST), Daegu 429888, Korea)

  • Sung Deuk Hahm

    (Korea Research Institute of Presidency (KIPS), Seoul 06306, Korea)

  • KyungHun Kim

    (Local Development Research Institute (LADI), Daegu 42768, Korea)

Abstract

Responding to the lack of empirical research on the effect of collective intelligence on open innovation in the fourth industrial revolution, we examined the relationship between collective intelligence and open innovation. Collective intelligence or crowd innovation not only produces creative ideas or inventions, but also moderates any firm to innovate inside-out, outside-in, or in a coupled manner. We asked the following research questions: Does collective intelligence (or crowd innovation) motivate open innovation? Is there any difference in the effect of collective intelligence on open innovation by industry? These research questions led to the following three hypotheses: (1) Collective intelligence increases the performance of a firm, (2) collective intelligence will moderate the effect of open innovation, and (3) differences exist between the automotive industry and the pharmaceutical industry in these two effects. To empirically examine these three hypotheses, we analyzed the registered patents of these two industries from 2000 to 2014 over a 15-year period. These automotive and pharmaceutical patents were registered in the B60 category and the A61K category of the Korea Patent office, respectively. Collective intelligence was measured by co-invention. We found differences in the effects of collective intelligence on open innovation between the two industries. In the automotive industry, collective intelligence not only directly increased the performance, but also indirectly moderated the open innovation effect. However, this was not the case for the pharmaceutical industry.

Suggested Citation

  • JinHyo Joseph Yun & EuiSeob Jeong & Xiaofei Zhao & Sung Deuk Hahm & KyungHun Kim, 2019. "Collective Intelligence: An Emerging World in Open Innovation," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4495-:d:259032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suzuki, Jun & Kodama, Fumio, 2004. "Technological diversity of persistent innovators in Japan: Two case studies of large Japanese firms," Research Policy, Elsevier, vol. 33(3), pages 531-549, April.
    2. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    3. Deepak Somaya & David J Teece, 2008. "Patents, Licensing, and Entrepreneurship: Effectuating Innovation in Multi-invention Contexts," World Scientific Book Chapters, in: Technological Know-How, Organizational Capabilities, And Strategic Management Business Strategy and Enterprise Development in Competitive Environments, chapter 14, pages 287-314, World Scientific Publishing Co. Pte. Ltd..
    4. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    5. Lechevalier, Sébastien & Nishimura, Junichi & Storz, Cornelia, 2014. "Diversity in patterns of industry evolution: How an intrapreneurial regime contributed to the emergence of the service robot industry," Research Policy, Elsevier, vol. 43(10), pages 1716-1729.
    6. Yongtae Park & Sungjoo Lee & Sora Lee, 2012. "Patent analysis for promoting technology transfer in multi-technology industries: the Korean aerospace industry case," The Journal of Technology Transfer, Springer, vol. 37(3), pages 355-374, June.
    7. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    8. Rajshree Agarwal & Martin Ganco & Rosemarie H. Ziedonis, 2009. "Reputations for toughness in patent enforcement: implications for knowledge spillovers via inventor mobility," Strategic Management Journal, Wiley Blackwell, vol. 30(13), pages 1349-1374, December.
    9. Sternitzke, Christian & Bartkowski, Adam & Schramm, Reinhard, 2008. "Visualizing patent statistics by means of social network analysis tools," World Patent Information, Elsevier, vol. 30(2), pages 115-131, June.
    10. Jinhyo Joseph Yun & EuiSeob Jeong & YoungKyu Lee & KyungHun Kim, 2018. "The Effect of Open Innovation on Technology Value and Technology Transfer: A Comparative Analysis of the Automotive, Robotics, and Aviation Industries of Korea," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    11. Brouwer, Erik & Kleinknecht, Alfred, 1999. "Innovative output, and a firm's propensity to patent.: An exploration of CIS micro data," Research Policy, Elsevier, vol. 28(6), pages 615-624, August.
    12. Tommaso Buganza & Davide Chiaroni & Gabriele Colombo & Federico Frattini, 2013. "Investigating Inter-Industry Differences in the Implementation of Open Innovation," World Scientific Book Chapters, in: Joe Tidd (ed.), Open Innovation Research, Management and Practice, chapter 13, pages 323-355, World Scientific Publishing Co. Pte. Ltd..
    13. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    14. Briggs, Kristie, 2015. "Co-owner relationships conducive to high quality joint patents," Research Policy, Elsevier, vol. 44(8), pages 1566-1573.
    15. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    16. Francis Heylighen, 1999. "Collective Intelligence and its Implementation on the Web: Algorithms to Develop a Collective Mental Map," Computational and Mathematical Organization Theory, Springer, vol. 5(3), pages 253-280, October.
    17. Franzoni, Chiara & Sauermann, Henry, 2014. "Crowd science: The organization of scientific research in open collaborative projects," Research Policy, Elsevier, vol. 43(1), pages 1-20.
    18. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    19. Heide Fier & Andreas Pyka, 2012. "Is It Worth All the Trouble? An Assessment of the Economic Value of Firm Patent Applications with Shared Intellectual Property Rights in the Biotechnology Industry," International Studies in Entrepreneurship, in: David B. Audretsch & Erik E. Lehmann & Albert N. Link & Alexander Starnecker (ed.), Technology Transfer in a Global Economy, edition 127, chapter 0, pages 123-142, Springer.
    20. Kwangsoo Shin & Sang Ji Kim & Gunno Park, 2016. "How does the partner type in R&D alliances impact technological innovation performance? A study on the Korean biotechnology industry," Asia Pacific Journal of Management, Springer, vol. 33(1), pages 141-164, March.
    21. Belderbos, René & Cassiman, Bruno & Faems, Dries & Leten, Bart & Van Looy, Bart, 2014. "Co-ownership of intellectual property: Exploring the value-appropriation and value-creation implications of co-patenting with different partners," Research Policy, Elsevier, vol. 43(5), pages 841-852.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuanping Dai & Guanzhong Yang, 2020. "Does Social Inducement Lead to Higher Open Innovation Investment? An Experimental Study," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    2. JinHyo Joseph Yun & Xiaofei Zhao & KwangHo Jung & Tan Yigitcanlar, 2020. "The Culture for Open Innovation Dynamics," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    3. Nobari, Niloofar & Dehkordi, Ali Mobini, 2023. "Innovation intelligence in managing co-creation process between tech-enabled corporations and startups," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    4. Valentina Della Corte & Giovanna Del Gaudio & Fabiana Sepe & Fabiana Sciarelli, 2019. "Sustainable Tourism in the Open Innovation Realm: A Bibliometric Analysis," Sustainability, MDPI, vol. 11(21), pages 1-18, November.
    5. Hoskins, Jake D. & Carson, Stephen J., 2022. "Industry conditions, market share, and the firm’s ability to derive business-line profitability from diverse technological portfolios," Journal of Business Research, Elsevier, vol. 149(C), pages 178-192.
    6. Shuichiro Kajima & Yuta Uchiyama & Ryo Kohsaka, 2020. "Intellectual Property Strategies for Timber and Forest Products: The Case of Regional Collective Trademark Applications by Japanese Forestry Associations," Sustainability, MDPI, vol. 12(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhyo Joseph Yun & EuiSeob Jeong & YoungKyu Lee & KyungHun Kim, 2018. "The Effect of Open Innovation on Technology Value and Technology Transfer: A Comparative Analysis of the Automotive, Robotics, and Aviation Industries of Korea," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    2. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    3. Brem, Alexander & Nylund, Petra A. & Schuster, Gerd, 2016. "Innovation and de facto standardization: The influence of dominant design on innovative performance, radical innovation, and process innovation," Technovation, Elsevier, vol. 50, pages 79-88.
    4. JinHyo Joseph Yun & EuiSeob Jeong & JinSeu Park, 2016. "Network Analysis of Open Innovation," Sustainability, MDPI, vol. 8(8), pages 1-21, July.
    5. Brem, Alexander & Nylund, Petra & Viardot, Eric, 2020. "The impact of the 2008 financial crisis on innovation: A dominant design perspective," Journal of Business Research, Elsevier, vol. 110(C), pages 360-369.
    6. JinHyo Joseph Yun & EuiSeob Jeong & ChangHwan Lee & JinSeu Park & Xiaofei Zhao, 2017. "Effect of Distance on Open Innovation: Differences among Institutions According to Patent Citation and Reference," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    7. Fu, Xiaolan & Fu, Xiaoqing (Maggie) & Ghauri, Pervez & Hou, Jun, 2022. "International collaboration and innovation: Evidence from a leading Chinese multinational enterprise," Journal of World Business, Elsevier, vol. 57(4).
    8. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    9. Krzysztof Klincewicz & Szymon Szumiał, 2022. "Successful patenting—not only how, but with whom: the importance of patent attorneys," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5111-5137, September.
    10. MahdaviMazdeh, Hossein & Saunders, Chad & Hawkins, Richard William & Dewald, Jim, 2021. "Reconsidering the dynamics of innovation in the natural resource industries," Resources Policy, Elsevier, vol. 72(C).
    11. Yang, Hongyan & Steensma, H. Kevin, 2014. "When do firms rely on their knowledge spillover recipients for guidance in exploring unfamiliar knowledge?," Research Policy, Elsevier, vol. 43(9), pages 1496-1507.
    12. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    13. Nelson, Andrew J., 2009. "Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion," Research Policy, Elsevier, vol. 38(6), pages 994-1005, July.
    14. Antonio Messeni Petruzzelli & Gianluca Murgia, 2020. "University–Industry collaborations and international knowledge spillovers: a joint-patent investigation," The Journal of Technology Transfer, Springer, vol. 45(4), pages 958-983, August.
    15. Pieter E. Stek, 2021. "Identifying spatial technology clusters from patenting concentrations using heat map kernel density estimation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 911-930, February.
    16. Cammarano, Antonello & Michelino, Francesca & Lamberti, Emilia & Caputo, Mauro, 2017. "Accumulated stock of knowledge and current search practices: The impact on patent quality," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 204-222.
    17. Takashi Iino & Hiroyasu Inoue & Yukiko U. Saito & Yasuyuki Todo, 2021. "How does the global network of research collaboration affect the quality of innovation?," The Japanese Economic Review, Springer, vol. 72(1), pages 5-48, January.
    18. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    19. Sandro Mendonca & Hugo Confraria & Manuel Mira Godinho, 2021. "Appropriating the returns of patent statistics: Take-up and development in the wake of Zvi Griliches," SPRU Working Paper Series 2021-07, SPRU - Science Policy Research Unit, University of Sussex Business School.
    20. Briggs, Kristie, 2015. "Co-owner relationships conducive to high quality joint patents," Research Policy, Elsevier, vol. 44(8), pages 1566-1573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4495-:d:259032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.