IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i1p243-d127611.html
   My bibliography  Save this article

An Entropy Approach to Regional Differences in Carbon Dioxide Emissions: Implications for Ethanol Usage

Author

Listed:
  • Dong Hee Suh

    (Department of Food and Resource Economics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

Abstract

The growth of the U.S. economy has been accompanied with a significant rise in carbon dioxide (CO 2 ) emissions. As CO 2 emissions are dependent on regional climatic conditions and energy-related activities in states, this study examines the extent to which the distribution of CO 2 emissions vary across nine climatically consistent regions in the U.S. The results obtained from the entropy approach reveal that the inequalities of CO 2 emissions vary across the regions. While the total inequality of CO 2 emissions is determined by the between-region and the average within-region inequalities, the between-region inequality begins to dominate the average within-region inequalities around 1980s; the emission inequalities between regions increase, but those within each region decrease. Given that ethanol usage is relevant to energy-related CO 2 emissions, this study also evaluates the impact of ethanol usage on the changes in the emission inequalities. The results show that an increase in the ratio of ethanol to fossil fuels is associated closely with the reductions in the inequalities of CO 2 emissions.

Suggested Citation

  • Dong Hee Suh, 2018. "An Entropy Approach to Regional Differences in Carbon Dioxide Emissions: Implications for Ethanol Usage," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:243-:d:127611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Hai-Yan & Kuo, Shyh-Hao & Li, Guoqi & Legara, Erika Fille T. & Zhao, Daxuan & Monterola, Christopher P., 2016. "Generalized Cross Entropy Method for estimating joint distribution from incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 162-172.
    2. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    3. Phu Nguyen Van, 2005. "Distribution Dynamics of CO 2 Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 495-508, December.
    4. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    5. Salois, Matthew & Moss, Charles, 2010. "An Information Approach to the Dynamics in Farm Income: Implications for Farmland Markets," MPRA Paper 26850, University Library of Munich, Germany.
    6. Theil, Henri, 1989. "The development of international inequality 1960-1985," Journal of Econometrics, Elsevier, vol. 42(1), pages 145-155, September.
    7. Bourguignon, Francois, 1979. "Decomposable Income Inequality Measures," Econometrica, Econometric Society, vol. 47(4), pages 901-920, July.
    8. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    9. Amy K. Richmond & Robert K. Kaufmann, 2006. "Energy Prices and Turning Points: The Relationship between Income and Energy Use/Carbon Emissions," The Energy Journal, , vol. 27(4), pages 157-180, October.
    10. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    11. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    12. Dinda, Soumyananda & Coondoo, Dipankor, 2006. "Income and emission: A panel data-based cointegration analysis," Ecological Economics, Elsevier, vol. 57(2), pages 167-181, May.
    13. Salois, Matthew J., 2013. "Regional changes in the distribution of foreign aid: An entropy approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2893-2902.
    14. Rothman, Dale S., 1998. "Environmental Kuznets curves--real progress or passing the buck?: A case for consumption-based approaches," Ecological Economics, Elsevier, vol. 25(2), pages 177-194, May.
    15. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    16. Richmond, Amy K. & Kaufmann, Robert K., 2006. "Is there a turning point in the relationship between income and energy use and/or carbon emissions?," Ecological Economics, Elsevier, vol. 56(2), pages 176-189, February.
    17. François Bourguignon & Christian Morrisson, 2002. "Inequality Among World Citizens: 1820-1992," American Economic Review, American Economic Association, vol. 92(4), pages 727-744, September.
    18. Coondoo, Dipankor & Dinda, Soumyananda, 2002. "Causality between income and emission: a country group-specific econometric analysis," Ecological Economics, Elsevier, vol. 40(3), pages 351-367, March.
    19. Roger Perman & David I. Stern, 2003. "Evidence from panel unit root and cointegration tests that the Environmental Kuznets Curve does not exist," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(3), pages 325-347, September.
    20. Matthew Salois & Charles Moss & Kenneth Erickson, 2012. "Farm income, population and farmland prices: a relative information approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 39(2), pages 289-307, April.
    21. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    22. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    23. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    24. Roca, Jordi & Alcantara, Vicent, 2001. "Energy intensity, CO2 emissions and the environmental Kuznets curve. The Spanish case," Energy Policy, Elsevier, vol. 29(7), pages 553-556, June.
    25. Moomaw, William R. & Unruh, Gregory C., 1997. "Are environmental Kuznets curves misleading us? The case of CO2 emissions," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 451-463, November.
    26. Theil, Henri & Theil, Henri, 1979. "World income inequality and its components," Economics Letters, Elsevier, vol. 2(1), pages 99-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    2. Bianco, Vincenzo & Cascetta, Furio & Marino, Alfonso & Nardini, Sergio, 2019. "Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues," Energy, Elsevier, vol. 170(C), pages 120-130.
    3. Xiaodan Wang & Zhengyu Yang, 2019. "Application of Fuzzy Optimization Model Based on Entropy Weight Method in Atmospheric Quality Evaluation: A Case Study of Zhejiang Province, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Hafeez & Chunhui Yuan & Issam Khelfaoui & Almalki Sultan Musaad O & Muhammad Waqas Akbar & Liu Jie, 2019. "Evaluating the Energy Consumption Inequalities in the One Belt and One Road Region: Implications for the Environment," Energies, MDPI, vol. 12(7), pages 1-15, April.
    2. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    3. Miguel Rodríguez & Yolanda Pena-Boquete, 2013. "Mishandling carbon intensities," Working Papers 1302, Universidade de Vigo, Departamento de Economía Aplicada.
    4. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    5. Barra, Cristian & Zotti, Roberto, 2016. "Investigating the impact of national income on environmental pollution. International evidence," MPRA Paper 74149, University Library of Munich, Germany.
    6. Cristian Barra & Roberto Zotti, 2018. "Investigating the non-linearity between national income and environmental pollution: international evidence of Kuznets curve," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 179-210, January.
    7. Lee, Chien-Chiang & Lee, Jun-De, 2009. "Income and CO2 emissions: Evidence from panel unit root and cointegration tests," Energy Policy, Elsevier, vol. 37(2), pages 413-423, February.
    8. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    9. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    10. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    11. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    12. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    13. Brännlund Runar & Karimu Amin & Söderholm Patrik, 2017. "Convergence in carbon dioxide emissions and the role of growth and institutions: a parametric and non-parametric analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 359-390, April.
    14. Roxana Pincheira & Felipe Zuniga, 2021. "Environmental Kuznets curve bibliographic map: a systematic literature review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1931-1956, April.
    15. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    16. Salois, Matthew J., 2013. "Regional changes in the distribution of foreign aid: An entropy approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2893-2902.
    17. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    18. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    19. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.
    20. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:243-:d:127611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.