IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v192y2024ics1364032123010894.html
   My bibliography  Save this article

Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico

Author

Listed:
  • Solano-Olivares, K.
  • Santoyo, E.
  • Santoyo-Castelazo, E.

Abstract

Mexico’s energy agenda has the commitment to achieve a share of 35% of renewable energy in the energy portfolio by 2025. Geothermal energy is a source that may contribute to this goal due to the enormous potential, and because it constitutes a viable option for energy diversification and decarbonisation of the electricity sector. However, it is recognised that the geothermal power plants and the direct use technologies still produce some negative sustainability impacts that need to be reduced. With these purposes, an integrated sustainability assessment framework to evaluate such geothermal technologies was developed with the following goals: (i) to obtain an updated systematic literature review on sustainability assessment frameworks, and life-cycle assessment studies to quantify sustainability impacts; (ii) to generate a new set of geothermal sustainability indicators for their future application in projects of electricity generation and direct uses of Mexico; and (iii) to propose sustainable strategies to support the deployment of new geothermal projects for Mexico. As key findings of this investigation, a new integrated framework to assess the sustainability of geothermal technologies, and a new set of 36 sustainability indicators were obtained. These sustainability indicators were selected through a participatory stakeholder engagement conducted by 136 respondents from the society, government, industry and academia. These indicators were ranked and prioritised using multi-criteria decision analysis techniques by additionally considering the main physicochemical and geological features of Mexico geothermal systems, and the production technologies currently installed. With this methodology, key sustainability challenges for the geothermal industry of Mexico can be tackled.

Suggested Citation

  • Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010894
    DOI: 10.1016/j.rser.2023.114231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pellizzone, Anna & Allansdottir, Agnes & De Franco, Roberto & Muttoni, Giovanni & Manzella, Adele, 2015. "Exploring public engagement with geothermal energy in southern Italy: A case study," Energy Policy, Elsevier, vol. 85(C), pages 1-11.
    2. Lorenzo Tosti & Nicola Ferrara & Riccardo Basosi & Maria Laura Parisi, 2020. "Complete Data Inventory of a Geothermal Power Plant for Robust Cradle-to-Grave Life Cycle Assessment Results," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Menberg, Kathrin & Heberle, Florian & Bott, Christoph & Brüggemann, Dieter & Bayer, Peter, 2021. "Environmental performance of a geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin," Renewable Energy, Elsevier, vol. 167(C), pages 20-31.
    4. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    5. Borzoni, Matteo & Rizzi, Francesco & Frey, Marco, 2014. "Geothermal power in Italy: A social multi-criteria evaluation," Renewable Energy, Elsevier, vol. 69(C), pages 60-73.
    6. Shutaro Takeda & Alexander Ryota Keeley & Shigeki Sakurai & Shunsuke Managi & Catherine Benoît Norris, 2019. "Are Renewables as Friendly to Humans as to the Environment?: A Social Life Cycle Assessment of Renewable Electricity," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    7. Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 391-406.
    8. Moya, Diego & Paredes, Juan & Kaparaju, Prasad, 2018. "Technical, financial, economic and environmental pre-feasibility study of geothermal power plants by RETScreen – Ecuador's case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 628-637.
    9. Sigurjónsson, Hafþór Ægir & Cook, David & Davíðsdóttir, Brynhildur & Bogason, Sigurður G., 2021. "A life-cycle analysis of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France," Renewable Energy, Elsevier, vol. 177(C), pages 1076-1086.
    10. Kubota, Hiromi & Hondo, Hiroki & Hienuki, Shunichi & Kaieda, Hideshi, 2013. "Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs," Energy Policy, Elsevier, vol. 61(C), pages 1079-1087.
    11. Pellizzone, Anna & Allansdottir, Agnes & De Franco, Roberto & Muttoni, Giovanni & Manzella, Adele, 2017. "Geothermal energy and the public: A case study on deliberative citizens’ engagement in central Italy," Energy Policy, Elsevier, vol. 101(C), pages 561-570.
    12. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    13. Reed, Mark S. & Fraser, Evan D.G. & Dougill, Andrew J., 2006. "An adaptive learning process for developing and applying sustainability indicators with local communities," Ecological Economics, Elsevier, vol. 59(4), pages 406-418, October.
    14. Atilgan, Burcin & Azapagic, Adisa, 2016. "An integrated life cycle sustainability assessment of electricity generation in Turkey," Energy Policy, Elsevier, vol. 93(C), pages 168-186.
    15. Ghenai, Chaouki & Albawab, Mona & Bettayeb, Maamar, 2020. "Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method," Renewable Energy, Elsevier, vol. 146(C), pages 580-597.
    16. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    17. Stamford, Laurence & Azapagic, Adisa, 2011. "Sustainability indicators for the assessment of nuclear power," Energy, Elsevier, vol. 36(10), pages 6037-6057.
    18. Banacloche, Santacruz & Cadarso, Maria Angeles & Monsalve, Fabio & Lechon, Yolanda, 2020. "Assessment of the sustainability of Mexico green investments in the road to Paris," Energy Policy, Elsevier, vol. 141(C).
    19. Onat, Nevzat & Bayar, Haydar, 2010. "The sustainability indicators of power production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3108-3115, December.
    20. Gerber, Léda & Maréchal, François, 2012. "Environomic optimal configurations of geothermal energy conversion systems: Application to the future construction of Enhanced Geothermal Systems in Switzerland," Energy, Elsevier, vol. 45(1), pages 908-923.
    21. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    22. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    23. Buonocore, Elvira & Vanoli, Laura & Carotenuto, Alberto & Ulgiati, Sergio, 2015. "Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy," Energy, Elsevier, vol. 86(C), pages 476-487.
    24. Catalina Turcu, 2013. "Re-thinking sustainability indicators: local perspectives of urban sustainability," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(5), pages 695-719, June.
    25. Vitantonio Colucci & Giampaolo Manfrida & Barbara Mendecka & Lorenzo Talluri & Claudio Zuffi, 2021. "LCA and Exergo-Environmental Evaluation of a Combined Heat and Power Double-Flash Geothermal Power Plant," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    26. Frick, Stephanie & Kaltschmitt, Martin & Schröder, Gerd, 2010. "Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs," Energy, Elsevier, vol. 35(5), pages 2281-2294.
    27. Drupp, Moritz A., 2011. "Does the Gold Standard label hold its promise in delivering higher Sustainable Development benefits? A multi-criteria comparison of CDM projects," Energy Policy, Elsevier, vol. 39(3), pages 1213-1227, March.
    28. Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
    29. Fortier, Marie-Odile P. & Teron, Lemir & Reames, Tony G. & Munardy, Dynta Trishana & Sullivan, Breck M., 2019. "Introduction to evaluating energy justice across the life cycle: A social life cycle assessment approach," Applied Energy, Elsevier, vol. 236(C), pages 211-219.
    30. Sala, Serenella & Ciuffo, Biagio & Nijkamp, Peter, 2015. "A systemic framework for sustainability assessment," Ecological Economics, Elsevier, vol. 119(C), pages 314-325.
    31. García-Gusano, Diego & Iribarren, Diego & Garraín, Daniel, 2017. "Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers," Applied Energy, Elsevier, vol. 190(C), pages 891-901.
    32. Tsagarakis, Konstantinos P., 2020. "Shallow geothermal energy under the microscope: Social, economic, and institutional aspects," Renewable Energy, Elsevier, vol. 147(P2), pages 2801-2808.
    33. Tom Waas & Jean Huge & Thomas BLOCK & Tarah Wright & Francisco Javier Benitez Capistros & Aviel Verbruggen, 2014. "Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development," ULB Institutional Repository 2013/189410, ULB -- Universite Libre de Bruxelles.
    34. Lohse, Christiane, 2018. "Environmental impact by hydrogeothermal energy generation in low-enthalpy regions," Renewable Energy, Elsevier, vol. 128(PB), pages 509-519.
    35. Mariita, Nicholas O., 2002. "The impact of large-scale renewable energy development on the poor: environmental and socio-economic impact of a geothermal power plant on a poor rural community in Kenya," Energy Policy, Elsevier, vol. 30(11-12), pages 1119-1128, September.
    36. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    37. Stephany Isabel Vallarta-Serrano & Edgar Santoyo-Castelazo & Edgar Santoyo & Esther O. García-Mandujano & Holkan Vázquez-Sánchez, 2023. "Integrated Sustainability Assessment Framework of Industry 4.0 from an Energy Systems Thinking Perspective: Bibliometric Analysis and Systematic Literature Review," Energies, MDPI, vol. 16(14), pages 1-30, July.
    38. Cathy Macharis & Bertrand Mareschal & Jean-Philippe Waaub & Lauriane Milan, 2015. "PROMETHEE-GDSS revisited: applications so far and new developments," International Journal of Multicriteria Decision Making, Inderscience Enterprises Ltd, vol. 5(1/2), pages 129-151.
    39. Lokey, Elizabeth, 2009. "Barriers to clean development mechanism renewable energy projects in Mexico," Renewable Energy, Elsevier, vol. 34(3), pages 504-508.
    40. Hanbury, O. & Vasquez, V.R., 2018. "Life cycle analysis of geothermal energy for power and transportation: A stochastic approach," Renewable Energy, Elsevier, vol. 115(C), pages 371-381.
    41. Simsek, Yeliz & Watts, David & Escobar, Rodrigo, 2018. "Sustainability evaluation of Concentrated Solar Power (CSP) projects under Clean Development Mechanism (CDM) by using Multi Criteria Decision Method (MCDM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 421-438.
    42. Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "A sustainability assessment framework for geothermal energy projects: Development in Iceland, New Zealand and Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 372-407.
    43. Schuwirth, N. & Reichert, P. & Lienert, J., 2012. "Methodological aspects of multi-criteria decision analysis for policy support: A case study on pharmaceutical removal from hospital wastewater," European Journal of Operational Research, Elsevier, vol. 220(2), pages 472-483.
    44. Yu-Che Tseng & Yuh-Ming Lee & Shih-Jung Liao, 2017. "An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    45. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    46. Liu, Gang, 2014. "Development of a general sustainability indicator for renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 611-621.
    47. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    48. Lacirignola, Martino & Blanc, Isabelle, 2013. "Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment," Renewable Energy, Elsevier, vol. 50(C), pages 901-914.
    49. Bernard Roy, 2010. "Two conceptions of decision aiding," International Journal of Multicriteria Decision Making, Inderscience Enterprises Ltd, vol. 1(1), pages 74-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    3. Gkousis, Spiros & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    5. Menberg, Kathrin & Heberle, Florian & Uhrmann, Hannah & Bott, Christoph & Grünäugl, Sebastian & Brüggemann, Dieter & Bayer, Peter, 2023. "Environmental impact of cogeneration in binary geothermal plants," Renewable Energy, Elsevier, vol. 218(C).
    6. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Sigurjónsson, Hafþór Ægir & Cook, David & Davíðsdóttir, Brynhildur & Bogason, Sigurður G., 2021. "A life-cycle analysis of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France," Renewable Energy, Elsevier, vol. 177(C), pages 1076-1086.
    8. Menberg, Kathrin & Heberle, Florian & Bott, Christoph & Brüggemann, Dieter & Bayer, Peter, 2021. "Environmental performance of a geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin," Renewable Energy, Elsevier, vol. 167(C), pages 20-31.
    9. Maria Laura Parisi & Melanie Douziech & Lorenzo Tosti & Paula Pérez-López & Barbara Mendecka & Sergio Ulgiati & Daniele Fiaschi & Giampaolo Manfrida & Isabelle Blanc, 2020. "Definition of LCA Guidelines in the Geothermal Sector to Enhance Result Comparability," Energies, MDPI, vol. 13(14), pages 1-18, July.
    10. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    11. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    12. Maryori Díaz-Ramírez & Snorri Jokull & Claudio Zuffi & María Dolores Mainar-Toledo & Giampaolo Manfrida, 2023. "Environmental Assessment of Hellisheidi Geothermal Power Plant based on Exergy Allocation Factors for Heat and Electricity Production," Energies, MDPI, vol. 16(9), pages 1-17, April.
    13. Knoblauch, Theresa A.K. & Trutnevyte, Evelina, 2018. "Siting enhanced geothermal systems (EGS): Heat benefits versus induced seismicity risks from an investor and societal perspective," Energy, Elsevier, vol. 164(C), pages 1311-1325.
    14. Vitantonio Colucci & Giampaolo Manfrida & Barbara Mendecka & Lorenzo Talluri & Claudio Zuffi, 2021. "LCA and Exergo-Environmental Evaluation of a Combined Heat and Power Double-Flash Geothermal Power Plant," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    15. Gkousis, Spiros & Thomassen, Gwenny & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Dynamic life cycle assessment of geothermal heat production from medium enthalpy hydrothermal resources," Applied Energy, Elsevier, vol. 328(C).
    16. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    17. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    18. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco, 2023. "Rigorous simulation of geothermal power plants to evaluate environmental performance of alternative configurations," Renewable Energy, Elsevier, vol. 207(C), pages 471-483.
    19. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    20. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.