IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4092-d181322.html
   My bibliography  Save this article

Multiple Urban Domestic Water Systems: Method for Simultaneously Stabilized Robust Control Decision

Author

Listed:
  • Kebai Li

    (School of Management Science and Engineering & China Institute of Manufacturing Development, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Tianyi Ma

    (School of Management Science and Engineering & China Institute of Manufacturing Development, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Guo Wei

    (Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA)

Abstract

The distribution of water resources and the degree of economic development in different cities will result in different parameters for the supply and demand of domestic water in each city. In this paper, a simultaneous stabilization and robust control method is proposed for decision-making regarding multiple urban domestic water systems. The urban water demand is expressed as the product of the urban domestic water consumption population and per capita domestic water consumption. The fixed capital investment and labor input of the urban domestic water supply industry are used as control variables. Based on the Lyapunov stability theory and the linear matrix inequality method, multiple urban domestic water supply and demand systems can accomplish asymptotical stability through the coordinated input of investment and labor. For an empirical analysis, we take six cities—Nanjing, Wuxi, Nantong, Yangzhou, Xuzhou, and Lianyungang—in Jiangsu Province, China, to study the simultaneously stabilized coordinated control scheme. The simulation results show that the same control scheme simultaneously achieves the asymptotic stability of these urban domestic water supply and demand systems, and is robust when it comes to the variation of system parameters. This method is particularly suitable for a water resources administrative agency to make a unified decision-making arrangement for water supply input in different areas. It will help synchronize multiple urban domestic water managements and reduce the difficulty of control.

Suggested Citation

  • Kebai Li & Tianyi Ma & Guo Wei, 2018. "Multiple Urban Domestic Water Systems: Method for Simultaneously Stabilized Robust Control Decision," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4092-:d:181322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eker, İ. & Grimble, M.J. & Kara, T., 2003. "Operation and simulation of city of Gaziantep water supply system in Turkey," Renewable Energy, Elsevier, vol. 28(6), pages 901-916.
    2. Catarina Roseta-Palma & Anastasios Xepapadeas, 2004. "Robust Control in Water Management," Journal of Risk and Uncertainty, Springer, vol. 29(1), pages 21-34, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenzhao Zhou & Yufei Wang & Xi Wang & Peng Gao & Ciyun Lin, 2022. "The Economic Value of Water Ecology in Sponge City Construction Based on a Ternary Interactive System," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    2. Kebai Li & Tianyi Ma & Tom Dooling & Guo Wei, 2019. "Urban Comprehensive Water Consumption: Nonlinear Control of Production Factor Input Based upon the C-D Function," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    3. Kebai Li & Tianyi Ma & Guo Wei & Yuqian Zhang & Xueyan Feng, 2019. "Urban Industrial Water Supply and Demand: System Dynamic Model and Simulation Based on Cobb–Douglas Function," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    4. Linlin Wang & Rongchang Wang & Haiyan Yan, 2021. "System-Dynamics Modeling for Exploring the Impact of Industrial-Structure Adjustment on the Water Quality of the River Network in the Yangtze Delta Area," Sustainability, MDPI, vol. 13(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Johannes Emmerling & Vassiliki Manoussi & Anastasios Xepapadeas, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," Working Papers 2016.52, Fondazione Eni Enrico Mattei.
    3. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    4. Michael Funke & Michael Paetz, 2011. "Environmental policy under model uncertainty: a robust optimal control approach," Climatic Change, Springer, vol. 107(3), pages 225-239, August.
    5. W.A. Brock & A. Xepapadeas & A.N. Yannacopoulos, 2014. "Optimal Control in Space and Time and the Management of Environmental Resources," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 33-68, October.
    6. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    7. Afshin Uossef Gomrokchi & Atefeh Parvaresh Rizi, 2021. "Flexibility of energy and water management in pressurized irrigation systems using dynamic modeling of pump operation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18232-18251, December.
    8. Hennlock, Magnus, 2009. "Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment," RFF Working Paper Series dp-09-19, Resources for the Future.
    9. Carraro, Carlo & Marchiori, Carmen & Sgobbi, Alessandra, 2005. "Applications of negotiation theory to water issues," Policy Research Working Paper Series 3641, The World Bank.
    10. Giannis Vardas & Anastasios Xepapadeas, 2015. "Uncertainty aversion, robust control and asset holdings," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 477-491, March.
    11. Eirik S. Amundsen & Frank Jensen, 2016. "Drought and Groundwater Management," IFRO Working Paper 2016/04, University of Copenhagen, Department of Food and Resource Economics.
    12. Eirik S. Amundsen & Frank Jensen, 2016. "Drought and Groundwater Management," CESifo Working Paper Series 5968, CESifo.
    13. Woonghee Tim Huh & Chandra Kiran Krishnamurthy & Richard Weber, 2011. "Concavity and monotonicity properties in a groundwater management model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 670-675, October.
    14. Daiki Kishishita & Susumu Sato, 2021. "Optimal risk regulation of monopolists with subjective risk assessment," Journal of Regulatory Economics, Springer, vol. 59(3), pages 251-279, June.
    15. Da-Rocha, Jose-Maria & García-Cutrin, Javier & Gutierrez, Maria Jose, 2016. "Harvesting Control Rules that deal with Scientific Uncertainty," MPRA Paper 72059, University Library of Munich, Germany.
    16. Graeme J. Doole & David J. Pannell, 2011. "Evaluating environmental policies under uncertainty through application of robust nonlinear programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 469-486, October.
    17. Anastasios Xepapadeas & Catarina Roseta-Palma, 2013. "Instabilities and robust control in natural resource management," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(3), pages 161-180, December.
    18. Hennlock, Magnus, 2009. "Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment," Working Papers in Economics 354, University of Gothenburg, Department of Economics.
    19. Giannis Vardas & Anastasios Xepapadeas, 2004. "Uncertainty Aversion and Robust Portfolio Choices," Working Papers 0408, University of Crete, Department of Economics.
    20. Shaw, W. Douglass & Woodward, Richard T., 2010. "Water Management, Risk, and Uncertainty: Things We Wish We Knew in the 21st Century," Western Economics Forum, Western Agricultural Economics Association, vol. 9(2), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4092-:d:181322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.