Urban Industrial Water Supply and Demand: System Dynamic Model and Simulation Based on Cobb–Douglas Function
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Roland Barthel & Stephan Janisch & Darla Nickel & Aleksandar Trifkovic & Thomas Hörhan, 2010. "Using the Multiactor-Approach in G lowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 239-275, January.
- Qinghua Zhang & Yanfang Diao & Jie Dong, 2013. "Regional Water Demand Prediction and Analysis Based on Cobb-Douglas Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3103-3113, June.
- Kebai Li & Tianyi Ma & Guo Wei, 2018. "Multiple Urban Domestic Water Systems: Method for Simultaneously Stabilized Robust Control Decision," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
- Kebai Li & Tianyi Ma & Tom Dooling & Guo Wei, 2019. "Urban Comprehensive Water Consumption: Nonlinear Control of Production Factor Input Based upon the C-D Function," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
- O. Idowu & J. Awomeso & O. Martins, 2012. "An Evaluation of Demand for and Supply of Potable Water in an Urban Centre of Abeokuta and Environs, Southwestern Nigeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2109-2121, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shifan Deng & Siyu Ma & Xiaowen Zhang & Shiqiang Zhang, 2020. "Integrated Detection of a Complex Underground Water Supply Pipeline System in an Old Urban Community in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
- Fanyu Pu & Songyan Jiang & Ling Zhang, 2023. "Future scenarios of China’s electric vehicle ownership: A modeling study based on system dynamic approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10017-10028, September.
- Linlin Wang & Rongchang Wang & Haiyan Yan, 2021. "System-Dynamics Modeling for Exploring the Impact of Industrial-Structure Adjustment on the Water Quality of the River Network in the Yangtze Delta Area," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kebai Li & Tianyi Ma & Tom Dooling & Guo Wei, 2019. "Urban Comprehensive Water Consumption: Nonlinear Control of Production Factor Input Based upon the C-D Function," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
- Jeßberger Christoph & Sindram Maximilian & Zimmer Markus, 2011.
"Global Warming Induced Water-Cycle Changes and Industrial Production – A Scenario Analysis for the Upper Danube River Basin,"
Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(3), pages 415-439, June.
- Christoph Jeßberger & Maximilian Sindram & Markus Zimmer, 2010. "Global Warming Induced Water-Cycle Changes and Industrial Production – A Scenario Analysis for the Upper Danube River Basin," ifo Working Paper Series 94, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- M. W. Straatsma & P. T. M. Vermeulen & M. J. M. Kuijper & M. Bonte & F. G. M. Niele & M. F. P. Bierkens, 2016. "Rapid Screening of Operational Freshwater Availability Using Global Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3013-3026, July.
- Anja Soboll & Michael Elbers & Roland Barthel & Juergen Schmude & Andreas Ernst & Ralf Ziller, 2011. "Integrated regional modelling and scenario development to evaluate future water demand under global change conditions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(4), pages 477-498, April.
- Noora Veijalainen & Tanja Dubrovin & Mika Marttunen & Bertel Vehviläinen, 2010. "Climate Change Impacts on Water Resources and Lake Regulation in the Vuoksi Watershed in Finland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3437-3459, October.
- D. González-Zeas & L. Garrote & A. Iglesias & A. Granados & A. Chávez-Jiménez, 2015. "Hydrologic Determinants of Climate Change Impacts on Regulated Water Resources Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1933-1947, April.
- Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.
- Linlin Wang & Rongchang Wang & Haiyan Yan, 2021. "System-Dynamics Modeling for Exploring the Impact of Industrial-Structure Adjustment on the Water Quality of the River Network in the Yangtze Delta Area," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
- Davy Vanham & Stefanie Millinger & Harald Pliessnig & Wolfgang Rauch, 2011. "Rasterised Water Demands: Methodology for Their Assessment and Possible Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3301-3320, October.
- Wenzhao Zhou & Yufei Wang & Xi Wang & Peng Gao & Ciyun Lin, 2022. "The Economic Value of Water Ecology in Sponge City Construction Based on a Ternary Interactive System," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
- Masih Akhbari & Neil Grigg, 2013. "A Framework for an Agent-Based Model to Manage Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4039-4052, September.
- Anja Berghammer & Jürgen Schmude, 2014. "The Christmas—Easter Shift: Simulating Alpine Ski Resorts' Future Development under Climate Change Conditions Using the Parameter ‘Optimal Ski Day’," Tourism Economics, , vol. 20(2), pages 323-336, April.
- Masih Akhbari & Neil Grigg, 2015. "Managing Water Resources Conflicts: Modelling Behavior in a Decision Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5201-5216, November.
- Peter Kreins & Martin Henseler & Jano Anter & Frank Herrmann & Frank Wendland, 2015. "Quantification of Climate Change Impact on Regional Agricultural Irrigation and Groundwater Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3585-3600, August.
- Roland Barthel & Tim Reichenau & Tatjana Krimly & Stephan Dabbert & Karl Schneider & Wolfram Mauser, 2012. "Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1929-1951, May.
More about this item
Keywords
industrial water; water supply and demand; system dynamics; Cobb–Douglas production function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5893-:d:279584. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.