IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i12d10.1007_s10668-021-01436-7.html
   My bibliography  Save this article

Flexibility of energy and water management in pressurized irrigation systems using dynamic modeling of pump operation

Author

Listed:
  • Afshin Uossef Gomrokchi

    (AREEO)

  • Atefeh Parvaresh Rizi

    (University of Tehran)

Abstract

Variable water demands in growing season, spatial altitude difference in hydrant points, incompatibility in irrigation time, crop pattern alternation and the other environmental factors are among the most important dynamic factors affecting the operation of pumping stations in an irrigation system. Pumping stations could be effectively operated using a dynamic or time-dependent approach. In this study, the performance of an agricultural pumping station, which will be equipped with variable speed pumps, was analyzed. The station is located in an agricultural area in Qazvin Province, northern Iran. The dynamic model of the pumping station was developed for simulating five defined operation scenarios. The results showed that using variable speed pumps is capable of reducing energy consumption up to 67 %, in comparison with current constant speed modes. The ratio of energy consumption for pumped water was determined equal to 0.37 kwh/m3 in variable speed mode, implying up to 45% reduction in comparison with use constant speed pumps.

Suggested Citation

  • Afshin Uossef Gomrokchi & Atefeh Parvaresh Rizi, 2021. "Flexibility of energy and water management in pressurized irrigation systems using dynamic modeling of pump operation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18232-18251, December.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:12:d:10.1007_s10668-021-01436-7
    DOI: 10.1007/s10668-021-01436-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01436-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01436-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golmohamadi, Hessam & Asadi, Amin, 2020. "A multi-stage stochastic energy management of responsive irrigation pumps in dynamic electricity markets," Applied Energy, Elsevier, vol. 265(C).
    2. R. Khadra & M. A Moreno & H. Awada & N. Lamaddalena, 2016. "Energy and Hydraulic Performance-Based Management of Large-Scale Pressurized Irrigation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3493-3506, August.
    3. Eker, İ. & Grimble, M.J. & Kara, T., 2003. "Operation and simulation of city of Gaziantep water supply system in Turkey," Renewable Energy, Elsevier, vol. 28(6), pages 901-916.
    4. Lima, F.A & Martínez-Romero, A. & Tarjuelo, J.M. & Córcoles, J.I., 2018. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part I): Model Development," Agricultural Water Management, Elsevier, vol. 210(C), pages 49-58.
    5. Tarjuelo, José M. & Rodriguez-Diaz, Juan A. & Abadía, Ricardo & Camacho, Emilio & Rocamora, Carmen & Moreno, Miguel A., 2015. "Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies," Agricultural Water Management, Elsevier, vol. 162(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lima, F.A & Martínez-Romero, A. & Tarjuelo, J.M. & Córcoles, J.I., 2018. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part I): Model Development," Agricultural Water Management, Elsevier, vol. 210(C), pages 49-58.
    2. Lima, F.A. & Córcoles, J.I. & Tarjuelo, J.M. & Martínez-Romero, A., 2019. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part II): Financial impact of regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 215(C), pages 44-54.
    3. Rafael Gonzalez Perea & Miguel Ángel Moreno & Victor Buono Silva Baptista & Juan Ignacio Córcoles, 2020. "Decision Support System Based on Genetic Algorithms to Optimize the Daily Management of Water Abstraction from Multiple Groundwater Supply Sources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4739-4755, December.
    4. Rita H. Almeida & Isaac B. Carrêlo & Eduardo Lorenzo & Luis Narvarte & José Fernández-Ramos & Francisco Martínez-Moreno & Luis M. Carrasco, 2018. "Development and Test of Solutions to Enlarge the Power of PV Irrigation and Application to a 140 kW PV-Diesel Representative Case," Energies, MDPI, vol. 11(12), pages 1-24, December.
    5. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    6. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    7. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    8. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    9. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    10. M. Mora & H. Puerto & C. Rocamora & R. Abadia, 2021. "New Indicators to Discriminate the Cause of Low Energy Efficiency in Deep-Well Pumps," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1373-1388, March.
    11. Armario Benitez, Julia I., 2020. "Land, water and energy: the crossing of governance," UC3M Working papers. Economics 31463, Universidad Carlos III de Madrid. Departamento de Economía.
    12. Joan Pujol & Francesc X. Espinach & Miquel Duran-Ros & Gerard Arbat & Toni Pujol & Francisco Ramírez de Cartagena & Jaume Puig-Bargués, 2022. "Environmental Assessment of Underdrain Designs for Granular Media Filters in Drip Irrigation Systems," Agriculture, MDPI, vol. 12(6), pages 1-14, June.
    13. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2021. "Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles," Applied Energy, Elsevier, vol. 290(C).
    14. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. van de Loo, Maaike & Camacho Poyato, Emilio & van Halsema, Gerardo & Rodríguez Díaz, Juan Antonio, 2024. "Defining the optimization strategy for solar energy use in large water distribution networks: A case study from the Valle Inferior irrigation system, Spain," Renewable Energy, Elsevier, vol. 228(C).
    16. Fouial, Abdelouahid & Fernández García, Irene & Bragalli, Cristiana & Brath, Armando & Lamaddalena, Nicola & Rodríguez Diaz, Juan Antonio, 2017. "Optimal operation of pressurised irrigation distribution systems operating by gravity," Agricultural Water Management, Elsevier, vol. 184(C), pages 77-85.
    17. Golmohamadi, Hessam, 2021. "Stochastic energy optimization of residential heat pumps in uncertain electricity markets," Applied Energy, Elsevier, vol. 303(C).
    18. Kebai Li & Tianyi Ma & Guo Wei, 2018. "Multiple Urban Domestic Water Systems: Method for Simultaneously Stabilized Robust Control Decision," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    19. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:12:d:10.1007_s10668-021-01436-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.