Forecasting Monthly Electric Energy Consumption Using Feature Extraction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nima Amjady & Farshid Keynia, 2011. "A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems," Energies, MDPI, vol. 4(3), pages 1-16, March.
- Zhao, Shan & Wei, G. W., 2003. "Jump process for the trend estimation of time series," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 219-241, February.
- Saab, Samer & Badr, Elie & Nasr, George, 2001. "Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon," Energy, Elsevier, vol. 26(1), pages 1-14.
- Abdel-Aal, R.E. & Al-Garni, A.Z., 1997. "Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis," Energy, Elsevier, vol. 22(11), pages 1059-1069.
- Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jindamas Sutthichaimethee & Kuskana Kubaha, 2018. "Forecasting Energy-Related Carbon Dioxide Emissions in Thailand’s Construction Sector by Enriching the LS-ARIMAXi-ECM Model," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
- Yongrui Qin & Meng Zhao & Qingcheng Lin & Xuefeng Li & Jing Ji, 2022. "Data-Driven Building Energy Consumption Prediction Model Based on VMD-SA-DBN," Mathematics, MDPI, vol. 10(17), pages 1-10, August.
- Ismail Shah & Hasnain Iftikhar & Sajid Ali & Depeng Wang, 2019. "Short-Term Electricity Demand Forecasting Using Components Estimation Technique," Energies, MDPI, vol. 12(13), pages 1-17, July.
- Concepción González-Concepción & María Candelaria Gil-Fariña & Celina Pestano-Gabino, 2018. "Wavelet power spectrum and cross-coherency of Spanish economic variables," Empirical Economics, Springer, vol. 55(2), pages 855-882, September.
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Angreine Kewo & Pinrolinvic D. K. Manembu & Per Sieverts Nielsen, 2020. "Synthesising Residential Electricity Load Profiles at the City Level Using a Weighted Proportion (Wepro) Model," Energies, MDPI, vol. 13(14), pages 1-28, July.
- Peng Jiang & Jun Dong & Hui Huang, 2019. "Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm," Energies, MDPI, vol. 12(7), pages 1-24, April.
- Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
- Mehmet Fatih Bayramoglu, 2016. "Future Electricity Demand of the Emerging European Countries and the CIS Countries," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(6), pages 15-23, October.
- Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
- Ying-Yi Hong & Ching-Ping Wu, 2012. "Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network," Energies, MDPI, vol. 5(11), pages 1-15, November.
- Wei Sun & Jingmin Wang & Hong Chang, 2012. "Forecasting Annual Power Generation Using a Harmony Search Algorithm-Based Joint Parameters Optimization Combination Model," Energies, MDPI, vol. 5(10), pages 1-24, October.
- Karadede, Yusuf & Ozdemir, Gultekin & Aydemir, Erdal, 2017. "Breeder hybrid algorithm approach for natural gas demand forecasting model," Energy, Elsevier, vol. 141(C), pages 1269-1284.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
- Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
- Varma, Rashmi & Sushil,, 2019. "Bridging the electricity demand and supply gap using dynamic modeling in the Indian context," Energy Policy, Elsevier, vol. 132(C), pages 515-535.
- Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
- Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
- Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
- Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
- Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
- Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
- Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
- Akdi, Yılmaz & Gölveren, Elif & Okkaoğlu, Yasin, 2020. "Daily electrical energy consumption: Periodicity, harmonic regression method and forecasting," Energy, Elsevier, vol. 191(C).
- Ediger, Volkan S. & Akar, Sertac & Ugurlu, Berkin, 2006. "Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model," Energy Policy, Elsevier, vol. 34(18), pages 3836-3846, December.
- Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
- Sumer, Kutluk Kagan & Goktas, Ozlem & Hepsag, Aycan, 2009. "The application of seasonal latent variable in forecasting electricity demand as an alternative method," Energy Policy, Elsevier, vol. 37(4), pages 1317-1322, April.
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
- Ismail Shah & Hasnain Iftikhar & Sajid Ali, 2020. "Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique," Forecasting, MDPI, vol. 2(2), pages 1-17, May.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
More about this item
Keywords
monthly electric energy consumption; forecasting; feature extraction; discrete wavelet transform; neural network; grey model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:10:p:1495-1507:d:14163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.