IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3498-d172844.html
   My bibliography  Save this article

Estimating Avocado Sales Using Machine Learning Algorithms and Weather Data

Author

Listed:
  • Juan Rincon-Patino

    (Grupo de ingeniería Telemática, Universidad del Cauca, Campus Tulcán, Popayán 190002, Colombia)

  • Emmanuel Lasso

    (Grupo de ingeniería Telemática, Universidad del Cauca, Campus Tulcán, Popayán 190002, Colombia)

  • Juan Carlos Corrales

    (Grupo de ingeniería Telemática, Universidad del Cauca, Campus Tulcán, Popayán 190002, Colombia)

Abstract

Persea americana , commonly known as avocado, is becoming increasingly important in global agriculture. There are dozens of avocado varieties, but more than 85% of the avocados harvested and sold in the world are of the Hass one. Furthermore, information on the market of agricultural products is valuable for decision-making; this has made researchers try to determine the behavior of the avocado market, based on data that might affect it one way or another. In this paper, a machine learning approach for estimating the number of units sold monthly and the total sales of Hass avocados in several cities in the United States, using weather data and historical sales records, is presented. For that purpose, four algorithms were evaluated: Linear Regression, Multilayer Perceptron, Support Vector Machine for Regression and Multivariate Regression Prediction Model. The last two showed the best accuracy, with a correlation coefficient of 0.995 and 0.996, and a Relative Absolute Error of 7.971 and 7.812, respectively. Using the Multivariate Regression Prediction Model, an application that allows avocado producers and sellers to plan sales through the estimation of the profits in dollars and the number of avocados that could be sold in the United States was created.

Suggested Citation

  • Juan Rincon-Patino & Emmanuel Lasso & Juan Carlos Corrales, 2018. "Estimating Avocado Sales Using Machine Learning Algorithms and Weather Data," Sustainability, MDPI, vol. 10(10), pages 1-12, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3498-:d:172844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Symeonidis, Lazaros & Daskalakis, George & Markellos, Raphael N., 2010. "Does the weather affect stock market volatility?," Finance Research Letters, Elsevier, vol. 7(4), pages 214-223, December.
    2. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    3. Murray, Kyle B. & Di Muro, Fabrizio & Finn, Adam & Popkowski Leszczyc, Peter, 2010. "The effect of weather on consumer spending," Journal of Retailing and Consumer Services, Elsevier, vol. 17(6), pages 512-520.
    4. David Camilo Corrales & Apolinar Figueroa Casas & Agapito Ledezma & Juan Carlos Corrales, 2016. "Two-Level Classifier Ensembles for Coffee Rust Estimation in Colombian Crops," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 7(3), pages 41-59, July.
    5. Kang, Sang Hoon & Jiang, Zhuhua & Lee, Yeonjeong & Yoon, Seong-Min, 2010. "Weather effects on the returns and volatility of the Shanghai stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 91-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan, Syed Akif & Subhani, Muhammad Imtiaz, 2011. "Which Matters the Most for the Trading Index? (Law and Order or Weather Conditions)," MPRA Paper 34736, University Library of Munich, Germany, revised 2011.
    2. Hyein Shim & Maria H. Kim & Doojin Ryu, 2017. "Effects of intraday weather changes on asset returns and volatilities," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 35(2), pages 301-330.
    3. Edimilson Costa Lucas & Wesley Mendes Da Silva & Gustavo Silva Araujo, 2017. "Does Extreme Rainfall Lead to Heavy Economic Losses in the Food Industry?," Working Papers Series 462, Central Bank of Brazil, Research Department.
    4. Chai Liang Huang & Lai Ferry Sugianto, 2024. "The scorching temperatures shock effect on firms’ performance: a global perspective," Review of Quantitative Finance and Accounting, Springer, vol. 62(4), pages 1651-1732, May.
    5. Filiz, Ibrahim & Nahmer, Thomas & Spiwoks, Markus, 2019. "Herd behavior and mood: An experimental study on the forecasting of share prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 24(C).
    6. Nils Muhlack & Christian Soost & Christian Johannes Henrich, 2022. "Does Weather Still Affect The Stock Market?," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 1-35, March.
    7. Yang, Chih-Yuan & Jhang, Ling-Jhen & Chang, Chia-Chien, 2016. "Do investor sentiment, weather and catastrophe effects improve hedging performance? Evidence from the Taiwan options market," Pacific-Basin Finance Journal, Elsevier, vol. 37(C), pages 35-51.
    8. Lu, Jing & Chou, Robin K., 2012. "Does the weather have impacts on returns and trading activities in order-driven stock markets? Evidence from China," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 79-93.
    9. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    10. Nicholas Apergis & Alexandros Gabrielsen & Lee Smales, 2016. "(Unusual) weather and stock returns—I am not in the mood for mood: further evidence from international markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 30(1), pages 63-94, February.
    11. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    12. Ming, Yaxin & Deng, Huixin & Wu, Xiaoyue, 2022. "The negative effect of air pollution on people's pro-environmental behavior," Journal of Business Research, Elsevier, vol. 142(C), pages 72-87.
    13. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    14. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    15. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    16. Jean-Louis Bertrand & Xavier Brusset, 2018. "Managing the financial consequences of weather variability," Journal of Asset Management, Palgrave Macmillan, vol. 19(5), pages 301-315, September.
    17. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.
    18. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    19. Kim, Jae H., 2017. "Stock returns and investors' mood: Good day sunshine or spurious correlation?," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 94-103.
    20. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3498-:d:172844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.