IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v4y2021i2p30-508d567065.html
   My bibliography  Save this article

Refined Mode-Clustering via the Gradient of Slope

Author

Listed:
  • Kunhui Zhang

    (Department of Statistics, University of Washington, Seattle, WA 98195, USA)

  • Yen-Chi Chen

    (Department of Statistics, University of Washington, Seattle, WA 98195, USA)

Abstract

In this paper, we propose a new clustering method inspired by mode-clustering that not only finds clusters, but also assigns each cluster with an attribute label. Clusters obtained from our method show connectivity of the underlying distribution. We also design a local two-sample test based on the clustering result that has more power than a conventional method. We apply our method to the Astronomy and GvHD data and show that our method finds meaningful clusters. We also derive the statistical and computational theory of our method.

Suggested Citation

  • Kunhui Zhang & Yen-Chi Chen, 2021. "Refined Mode-Clustering via the Gradient of Slope," Stats, MDPI, vol. 4(2), pages 1-23, June.
  • Handle: RePEc:gam:jstats:v:4:y:2021:i:2:p:30-508:d:567065
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/4/2/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/4/2/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scrucca, Luca, 2016. "Identifying connected components in Gaussian finite mixture models for clustering," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 5-17.
    2. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2012. "The Geometry of Nonparametric Filament Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 788-799, June.
    3. Vieu, Philippe, 1996. "A note on density mode estimation," Statistics & Probability Letters, Elsevier, vol. 26(4), pages 297-307, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    2. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    3. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    4. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    5. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    6. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    7. Alessandro Casa & Luca Scrucca & Giovanna Menardi, 2021. "Better than the best? Answers via model ensemble in density-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 599-623, September.
    8. Horová Ivana & Vieu Philippe & Zelinka Jiří, 2002. "Optimal Choice Of Nonparametric Estimates Of A Density And Of Its Derivatives," Statistics & Risk Modeling, De Gruyter, vol. 20(1-4), pages 355-378, April.
    9. Pulkkinen, Seppo, 2015. "Ridge-based method for finding curvilinear structures from noisy data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 89-109.
    10. Cuevas, Antonio & Llop, Pamela & Pateiro-López, Beatriz, 2014. "On the estimation of the medial axis and inner parallel body," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 171-185.
    11. Han-Ying Liang & Jacobo Uña-Álvarez, 2010. "Asymptotic normality for estimator of conditional mode under left-truncated and dependent observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 1-19, July.
    12. Rachdi, Mustapha & Sabre, Rachid, 2000. "Consistent estimates of the mode of the probability density function in nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 105-114, April.
    13. Ouafae Benrabah & Elias Ould Saïd & Abdelkader Tatachak, 2015. "A kernel mode estimate under random left truncation and time series model: asymptotic normality," Statistical Papers, Springer, vol. 56(3), pages 887-910, August.
    14. A. Quintela-Del-Río & Ph. Vieu, 1997. "A nonparametric conditional mode estimate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 253-266, September.
    15. Herrmann, Eva & Ziegler, Klaus, 2004. "Rates of consistency for nonparametric estimation of the mode in absence of smoothness assumptions," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 359-368, July.
    16. Obereder, Andreas & Scherzer, Otmar & Kovac, Arne, 2007. "Bivariate density estimation using BV regularisation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5622-5634, August.
    17. Leclerc J., 2000. "Strong Limiting Behavior Of Two Estimates Of The Mode : The Shorth And The Naive Estimator," Statistics & Risk Modeling, De Gruyter, vol. 18(4), pages 413-428, April.
    18. Warren C Jochem & Douglas R Leasure & Oliver Pannell & Heather R Chamberlain & Patricia Jones & Andrew J Tatem, 2021. "Classifying settlement types from multi-scale spatial patterns of building footprints," Environment and Planning B, , vol. 48(5), pages 1161-1179, June.
    19. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "A note on the convergence rate of the kernel density estimator of the mode," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1866-1871, September.
    20. Barbara Wieczorek, 2010. "On optimal estimation of the mode in nonparametric deconvolution problems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 65-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:4:y:2021:i:2:p:30-508:d:567065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.