IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v68y2016i2p301-327.html
   My bibliography  Save this article

Kernel estimators of mode under $$\psi $$ ψ -weak dependence

Author

Listed:
  • Eunju Hwang
  • Dong Shin

Abstract

Nonparametric kernel-type estimation is discussed for modes which maximize nonparametric kernel-type density estimators. The discussion is made under a weak dependence condition which unifies weak dependence conditions such as mixing, association, Gaussian sequences and Bernoulli shifts. Consistency and asymptotic normality are established for the mode estimator as well as for kernel estimators of density derivatives. The convergence rate of the mode estimator is given in terms of the bandwidth. An optimal bandwidth selection procedure is proposed for mode estimation. A Monte-Carlo experiment shows that the proposed bandwidth yields a substantially better mode estimator than the common bandwidths optimized for density estimation. Modes of log returns of Dow Jones index and foreign exchange rates of US Dollar relative to Euro are investigated in terms of asymmetry. Copyright The Institute of Statistical Mathematics, Tokyo 2016

Suggested Citation

  • Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
  • Handle: RePEc:spr:aistmt:v:68:y:2016:i:2:p:301-327
    DOI: 10.1007/s10463-014-0489-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-014-0489-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-014-0489-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrmann, Eva & Ziegler, Klaus, 2004. "Rates of consistency for nonparametric estimation of the mode in absence of smoothness assumptions," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 359-368, July.
    2. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "A note on the convergence rate of the kernel density estimator of the mode," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1866-1871, September.
    3. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
    4. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    5. Paul Doukhan & Sana Louhichi, 2001. "Functional Estimation of a Density Under a New Weak Dependence Condition," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 325-341, June.
    6. Roussas, George G., 1990. "Nonparametric regression estimation under mixing conditions," Stochastic Processes and their Applications, Elsevier, vol. 36(1), pages 107-116, October.
    7. Frédéric Ferraty & Ali Laksaci & Philippe Vieu, 2006. "Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 47-76, May.
    8. Vieu, Philippe, 1996. "A note on density mode estimation," Statistics & Probability Letters, Elsevier, vol. 26(4), pages 297-307, March.
    9. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "Strong convergence rate of estimators of change point and its application," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 990-998, February.
    10. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(6), pages 995-1045, December.
    11. Doukhan, Paul & Neumann, Michael H., 2007. "Probability and moment inequalities for sums of weakly dependent random variables, with applications," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 878-903, July.
    12. Coulon-Prieur, Clémentine & Doukhan, Paul, 2000. "A triangular central limit theorem under a new weak dependence condition," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 61-68, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Younso, 2023. "On the consistency of mode estimate for spatially dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 343-372, April.
    2. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    2. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
    3. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "A note on the convergence rate of the kernel density estimator of the mode," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1866-1871, September.
    4. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    5. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    6. Ouafae Benrabah & Elias Ould Saïd & Abdelkader Tatachak, 2015. "A kernel mode estimate under random left truncation and time series model: asymptotic normality," Statistical Papers, Springer, vol. 56(3), pages 887-910, August.
    7. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    8. Juan Carlos Escanciano, 2020. "Uniform Rates for Kernel Estimators of Weakly Dependent Data," Papers 2005.09951, arXiv.org.
    9. Li Zhaoyuan & Tian Maozai, 2017. "Detecting Change-Point via Saddlepoint Approximations," Journal of Systems Science and Information, De Gruyter, vol. 5(1), pages 48-73, February.
    10. Berkes, István & Hörmann, Siegfried & Horváth, Lajos, 2008. "The functional central limit theorem for a family of GARCH observations with applications," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2725-2730, November.
    11. Sancetta, Alessio, 2009. "Nearest neighbor conditional estimation for Harris recurrent Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2224-2236, November.
    12. A. Quintela-Del-Río & Ph. Vieu, 1997. "A nonparametric conditional mode estimate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 253-266, September.
    13. Doukhan, P. & Pommeret, D. & Reboul, L., 2015. "Data driven smooth test of comparison for dependent sequences," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 147-165.
    14. Nassira Menni & Abdelkader Tatachak, 2018. "A note on estimating the conditional expectation under censoring and association: strong uniform consistency," Statistical Papers, Springer, vol. 59(3), pages 1009-1030, September.
    15. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    16. Said Attaoui, 2014. "Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 257-286, July.
    17. Jean-Marc Bardet & Paul Doukhan & José Rafael Leon_, 2005. "A Functional Limit Theorem for weakly Dependent Processes and its Applications," Working Papers 2005-45, Center for Research in Economics and Statistics.
    18. Obereder, Andreas & Scherzer, Otmar & Kovac, Arne, 2007. "Bivariate density estimation using BV regularisation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5622-5634, August.
    19. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.
    20. Jean-Marc Bardet & Paul Doukhan & José Rafael Leon_, 2005. "Uniform Limit Theorems for the Integrated Periodogram of Weakly Dependent Time Series and their Applications to Whittle's Estimate," Working Papers 2005-46, Center for Research in Economics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:68:y:2016:i:2:p:301-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.