IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v68y2004i4p359-368.html
   My bibliography  Save this article

Rates of consistency for nonparametric estimation of the mode in absence of smoothness assumptions

Author

Listed:
  • Herrmann, Eva
  • Ziegler, Klaus

Abstract

Nonparametric estimation of the mode of a density or regression function via kernel methods is considered. It is shown that the rate of consistency of the mode estimator can be determined without the typical smoothness conditions. Only the uniform rate of the so-called stochastic part of the problem together with some mild conditions characterizing the shape or "acuteness" of the mode influence the rate of the mode estimator. In particular, outside the location of the mode, our assumptions do not even imply continuity. Overall, it turns out that the location of the mode can be estimated at a rate that is the better the "peakier" (and hence nonsmooth) the mode is, while the contrary holds with estimation of the size of the mode.

Suggested Citation

  • Herrmann, Eva & Ziegler, Klaus, 2004. "Rates of consistency for nonparametric estimation of the mode in absence of smoothness assumptions," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 359-368, July.
  • Handle: RePEc:eee:stapro:v:68:y:2004:i:4:p:359-368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00124-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vieu, Philippe, 1996. "A note on density mode estimation," Statistics & Probability Letters, Elsevier, vol. 26(4), pages 297-307, March.
    2. Liebscher E., 2001. "Estimation Of The Density And The Regression Function Under Mixing Conditions," Statistics & Risk Modeling, De Gruyter, vol. 19(1), pages 9-26, January.
    3. Joseph Romano, 1988. "Bootstrapping the mode," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(3), pages 565-586, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouafae Benrabah & Elias Ould Saïd & Abdelkader Tatachak, 2015. "A kernel mode estimate under random left truncation and time series model: asymptotic normality," Statistical Papers, Springer, vol. 56(3), pages 887-910, August.
    2. Jan Beran & Klaus Telkmann, 2021. "On inference for modes under long memory," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 429-455, June.
    3. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "A note on the convergence rate of the kernel density estimator of the mode," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1866-1871, September.
    4. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    5. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    6. Obereder, Andreas & Scherzer, Otmar & Kovac, Arne, 2007. "Bivariate density estimation using BV regularisation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5622-5634, August.
    7. Salah Khardani & Mohamed Lemdani & Elias Ould Saïd, 2012. "On the strong uniform consistency of the mode estimator for censored time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 229-241, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    2. Han-Ying Liang & Jacobo Uña-Álvarez, 2010. "Asymptotic normality for estimator of conditional mode under left-truncated and dependent observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 1-19, July.
    3. Liebscher, Eckhard, 2003. "Strong convergence of estimators in nonlinear autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 247-261, February.
    4. Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
    5. Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 267-289, April.
    6. Rachdi, Mustapha & Sabre, Rachid, 2000. "Consistent estimates of the mode of the probability density function in nonparametric deconvolution problems," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 105-114, April.
    7. Ouafae Benrabah & Elias Ould Saïd & Abdelkader Tatachak, 2015. "A kernel mode estimate under random left truncation and time series model: asymptotic normality," Statistical Papers, Springer, vol. 56(3), pages 887-910, August.
    8. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    9. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.
    10. Walk, Harro, 2010. "Strong consistency of kernel estimates of regression function under dependence," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1147-1156, August.
    11. Wang, Weizhen, 2013. "A note on bootstrap confidence intervals for proportions," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2699-2702.
    12. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    13. Efstathios Paparoditis & Dimitris Politis, 2000. "The Local Bootstrap for Kernel Estimators under General Dependence Conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(1), pages 139-159, March.
    14. A. Quintela-Del-Río & Ph. Vieu, 1997. "A nonparametric conditional mode estimate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 8(3), pages 253-266, September.
    15. Junke Kou & Youming Liu, 2018. "Wavelet regression estimations with strong mixing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 667-688, December.
    16. Ai-Ai Liu & Han-Ying Liang, 2017. "Jackknife empirical likelihood of error variance in partially linear varying-coefficient errors-in-variables models," Statistical Papers, Springer, vol. 58(1), pages 95-122, March.
    17. Jing Wang, 2012. "Modelling time trend via spline confidence band," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 275-301, April.
    18. Horová Ivana & Vieu Philippe & Zelinka Jiří, 2002. "Optimal Choice Of Nonparametric Estimates Of A Density And Of Its Derivatives," Statistics & Risk Modeling, De Gruyter, vol. 20(1-4), pages 355-378, April.
    19. Kunhui Zhang & Yen-Chi Chen, 2021. "Refined Mode-Clustering via the Gradient of Slope," Stats, MDPI, vol. 4(2), pages 1-23, June.
    20. Dabo-Niang, Sophie & Francq, Christian & Zakoian, Jean-Michel, 2009. "Combining parametric and nonparametric approaches for more efficient time series prediction," MPRA Paper 16893, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:68:y:2004:i:4:p:359-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.