IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v2y2019i2p14-201d218593.html
   My bibliography  Save this article

A Parametric Bayesian Approach in Density Ratio Estimation

Author

Listed:
  • Abdolnasser Sadeghkhani

    (Department of Mathematics & Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada)

  • Yingwei Peng

    (Departments of Public Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada)

  • Chunfang Devon Lin

    (Department of Mathematics & Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada)

Abstract

This paper is concerned with estimating the ratio of two distributions with different parameters and common supports. We consider a Bayesian approach based on the log–Huber loss function, which is resistant to outliers and useful for finding robust M-estimators. We propose two different types of Bayesian density ratio estimators and compare their performance in terms of frequentist risk function. Some applications, such as classification and divergence function estimation, are addressed.

Suggested Citation

  • Abdolnasser Sadeghkhani & Yingwei Peng & Chunfang Devon Lin, 2019. "A Parametric Bayesian Approach in Density Ratio Estimation," Stats, MDPI, vol. 2(2), pages 1-13, March.
  • Handle: RePEc:gam:jstats:v:2:y:2019:i:2:p:14-201:d:218593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/2/2/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/2/2/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masashi Sugiyama & Taiji Suzuki & Shinichi Nakajima & Hisashi Kashima & Paul Bünau & Motoaki Kawanabe, 2008. "Direct importance estimation for covariate shift adaptation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 699-746, December.
    2. Krnjajic, Milovan & Kottas, Athanasios & Draper, David, 2008. "Parametric and nonparametric Bayesian model specification: A case study involving models for count data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2110-2128, January.
    3. Masashi Sugiyama & Taiji Suzuki & Takafumi Kanamori, 2012. "Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1009-1044, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukitoshi Matsushita & Taisuke Otsu & Keisuke Takahata, 2022. "Estimating density ratio of marginals to joint: Applications to causal inference," STICERD - Econometrics Paper Series 619, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Yannis Yatracos, 2013. "Equal percent bias reduction and variance proportionate modifying properties with mean–covariance preserving matching," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 69-87, February.
    3. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    4. Masahiro Kato & Hikaru Kawarazaki, 2019. "Model Specification Test with Unlabeled Data: Approach from Covariate Shift," Papers 1911.00688, arXiv.org, revised Feb 2020.
    5. Zhexiao Lin & Peng Ding & Fang Han, 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect," Econometrica, Econometric Society, vol. 91(6), pages 2187-2217, November.
    6. Dylan Brewer & Alyssa Carlson, 2024. "Addressing sample selection bias for machine learning methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 383-400, April.
    7. Sheng, Haiyang & Yu, Guan, 2023. "TNN: A transfer learning classifier based on weighted nearest neighbors," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    8. Julyan Arbel & Riccardo Corradin & Bernardo Nipoti, 2021. "Dirichlet process mixtures under affine transformations of the data," Computational Statistics, Springer, vol. 36(1), pages 577-601, March.
    9. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    10. Jiaming Mao & Zhesheng Zheng, 2020. "Structural Regularization," Papers 2004.12601, arXiv.org, revised Jun 2020.
    11. Masahiro Kato & Masatoshi Uehara & Shota Yasui, 2020. "Off-Policy Evaluation and Learning for External Validity under a Covariate Shift," Papers 2002.11642, arXiv.org, revised Oct 2020.
    12. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    13. Julia Braun & Leonhard Held & Bruno Ledergerber, 2012. "Predictive Cross-validation for the Choice of Linear Mixed-Effects Models with Application to Data from the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 68(1), pages 53-61, March.
    14. Nishiyama, Tomohiro, 2019. "A New Lower Bound for Kullback-Leibler Divergence Based on Hammersley-Chapman-Robbins Bound," OSF Preprints wa98j, Center for Open Science.
    15. Sookyo Jeong & Hongseok Namkoong, 2020. "Assessing External Validity Over Worst-case Subpopulations," Papers 2007.02411, arXiv.org, revised Feb 2022.
    16. Masashi Sugiyama & Taiji Suzuki & Takafumi Kanamori, 2012. "Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1009-1044, October.
    17. David Bruns-Smith & Oliver Dukes & Avi Feller & Elizabeth L. Ogburn, 2023. "Augmented balancing weights as linear regression," Papers 2304.14545, arXiv.org, revised Jun 2024.
    18. Hofer, Vera, 2015. "Adapting a classification rule to local and global shift when only unlabelled data are available," European Journal of Operational Research, Elsevier, vol. 243(1), pages 177-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:2:y:2019:i:2:p:14-201:d:218593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.