IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v65y2013i1p69-87.html
   My bibliography  Save this article

Equal percent bias reduction and variance proportionate modifying properties with mean–covariance preserving matching

Author

Listed:
  • Yannis Yatracos

Abstract

Mean-preserving and covariance preserving matchings are introduced that can be obtained with conditional, randomized matching on sub-populations of a large control group. Under moment conditions it is shown that these matchings are, respectively, equal percent bias reducing (EPBR) and variance proportionate modifying (PM) for linear functions of the covariates and their standardizations. The results provide additional insight into and theory for EPBR and PM properties and confirm empirical and simulation findings that matchings can have the EPBR and PM properties also when the covariates are not exchangeable, or the treatment means are not equal. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Suggested Citation

  • Yannis Yatracos, 2013. "Equal percent bias reduction and variance proportionate modifying properties with mean–covariance preserving matching," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 69-87, February.
  • Handle: RePEc:spr:aistmt:v:65:y:2013:i:1:p:69-87
    DOI: 10.1007/s10463-012-0358-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-012-0358-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-012-0358-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    2. Masashi Sugiyama & Taiji Suzuki & Shinichi Nakajima & Hisashi Kashima & Paul Bünau & Motoaki Kawanabe, 2008. "Direct importance estimation for covariate shift adaptation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 699-746, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yukitoshi Matsushita & Taisuke Otsu & Keisuke Takahata, 2022. "Estimating density ratio of marginals to joint: Applications to causal inference," STICERD - Econometrics Paper Series 619, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    3. Pablo Ibarraran & Miguel Sarzosa & Yuri Suarez Dillon Soares, 2008. "The Welfare Impacts of Local Investment Projects: Evidence from the Guatemala FIS," OVE Working Papers 0208, Inter-American Development Bank, Office of Evaluation and Oversight (OVE).
    4. Hilal Atasoy & Rajiv D. Banker & Paul A. Pavlou, 2016. "On the Longitudinal Effects of IT Use on Firm-Level Employment," Information Systems Research, INFORMS, vol. 27(1), pages 6-26, March.
    5. Tugba Akkaya Hocagil & Richard J. Cook & Sandra W. Jacobson & Joseph L. Jacobson & Louise M. Ryan, 2021. "Propensity score analysis for a semi‐continuous exposure variable: a study of gestational alcohol exposure and childhood cognition," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1390-1413, October.
    6. Becker, Sascha O. & Egger, Peter H. & von Ehrlich, Maximilian, 2012. "Too much of a good thing? On the growth effects of the EU's regional policy," European Economic Review, Elsevier, vol. 56(4), pages 648-668.
    7. Malcolm Keswell & Michael R. Carter, 2011. "Poverty and Land Distribution: Evidence from a Natural Experiment," WIDER Working Paper Series wp-2011-046, World Institute for Development Economic Research (UNU-WIDER).
    8. Cerqua Augusto & Di Stefano Roberta & Mattera Raffaele, 2024. "The Clustered Dose-Response Function Estimator for continuous treatment with heterogeneous treatment effects," Papers 2409.08773, arXiv.org.
    9. W K Newey & S Stouli, 2022. "Heterogeneous coefficients, control variables and identification of multiple treatment effects [Multivalued treatments and decomposition analysis: An application to the WIA program]," Biometrika, Biometrika Trust, vol. 109(3), pages 865-872.
    10. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    11. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    12. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    13. Jun Du & Sourafel Girma, 2009. "The Effects of Foreign Acquisition on Domestic and Export Markets Dynamics in China," The World Economy, Wiley Blackwell, vol. 32(1), pages 164-177, January.
    14. Carina Steckenleiter & Michael Lechner & Tim Pawlowski & Ute Schüttoff, 2023. "Do local expenditures on sports facilities affect sports participation?," Economic Inquiry, Western Economic Association International, vol. 61(4), pages 1103-1128, October.
    15. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    16. Binkley, James K. & Young, Jeffrey S., 2022. "Deficient Dietary Behavior in Low-Income Americans: Assessing the Role of Diet Costs," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322055, Agricultural and Applied Economics Association.
    17. Michela Bia & Carlos A. Flores & Alfonso Flores-Lagunes & Alessandra Mattei, 2014. "A Stata package for the application of semiparametric estimators of dose–response functions," Stata Journal, StataCorp LP, vol. 14(3), pages 580-604, September.
    18. Steckenleiter, Carina & Lechner, Michael & Pawlowski, Tim & Schüttoff, Ute, 2019. "Do local public expenditures on sports facilities affect sports participation in Germany?," Economics Working Paper Series 1905, University of St. Gallen, School of Economics and Political Science.
    19. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    20. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:65:y:2013:i:1:p:69-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.