IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i4p2110-2128.html
   My bibliography  Save this article

Parametric and nonparametric Bayesian model specification: A case study involving models for count data

Author

Listed:
  • Krnjajic, Milovan
  • Kottas, Athanasios
  • Draper, David

Abstract

No abstract is available for this item.

Suggested Citation

  • Krnjajic, Milovan & Kottas, Athanasios & Draper, David, 2008. "Parametric and nonparametric Bayesian model specification: A case study involving models for count data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2110-2128, January.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:4:p:2110-2128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00268-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athanasios Kottas & Alan E. Gelfand, 2001. "Modeling Variability Order: A Semiparametric Bayesian Approach," Methodology and Computing in Applied Probability, Springer, vol. 3(4), pages 427-442, December.
    2. Alan Gelfand & Athanasios Kottas, 2001. "Nonparametric Bayesian Modeling for Stochastic Order," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 865-876, December.
    3. Stephen G. Walker & Paul Damien & PuruShottam W. Laud & Adrian F. M. Smith, 1999. "Bayesian Nonparametric Inference for Random Distributions and Related Functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 485-527.
    4. Paddock, Susan M. & Ridgeway, Greg & Lin, Rongheng & Louis, Thomas A., 2006. "Flexible distributions for triple-goal estimates in two-stage hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3243-3262, July.
    5. Cinzia Carota, 2002. "Semiparametric regression for count data," Biometrika, Biometrika Trust, vol. 89(2), pages 265-281, June.
    6. Athanasios Kottas & Márcia D. Branco & Alan E. Gelfand, 2002. "A Nonparametric Bayesian Modeling Approach for Cytogenetic Dosimetry," Biometrics, The International Biometric Society, vol. 58(3), pages 593-600, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Braun & Leonhard Held & Bruno Ledergerber, 2012. "Predictive Cross-validation for the Choice of Linear Mixed-Effects Models with Application to Data from the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 68(1), pages 53-61, March.
    2. Abdolnasser Sadeghkhani & Yingwei Peng & Chunfang Devon Lin, 2019. "A Parametric Bayesian Approach in Density Ratio Estimation," Stats, MDPI, vol. 2(2), pages 1-13, March.
    3. Julyan Arbel & Riccardo Corradin & Bernardo Nipoti, 2021. "Dirichlet process mixtures under affine transformations of the data," Computational Statistics, Springer, vol. 36(1), pages 577-601, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    2. Michael L. Pennell & David B. Dunson, 2008. "Nonparametric Bayes Testing of Changes in a Response Distribution with an Ordinal Predictor," Biometrics, The International Biometric Society, vol. 64(2), pages 413-423, June.
    3. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    4. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    5. Christopher A. Bush & Juhee Lee & Steven N. MacEachern, 2010. "Minimally informative prior distributions for non‐parametric Bayesian analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 253-268, March.
    6. Karabatsos, George & Walker, Stephen G., 2007. "Bayesian nonparametric inference of stochastically ordered distributions, with Pólya trees and Bernstein polynomials," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 907-913, May.
    7. John J. McCall, 2004. "Induction: From Kolmogorov and Solomonoff to De Finetti and Back to Kolmogorov," Metroeconomica, Wiley Blackwell, vol. 55(2‐3), pages 195-218, May.
    8. Kassandra Fronczyk & Athanasios Kottas, 2014. "A Bayesian approach to the analysis of quantal bioassay studies using nonparametric mixture models," Biometrics, The International Biometric Society, vol. 70(1), pages 95-102, March.
    9. J. R. Lockwood & Katherine E. Castellano & Benjamin R. Shear, 2018. "Flexible Bayesian Models for Inferences From Coarsened, Group-Level Achievement Data," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 663-692, December.
    10. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    11. Luis G. León-Novelo & Peter Müller & Wadih Arap & Mikhail Kolonin & Jessica Sun & Renata Pasqualini & Kim-Anh Do, 2013. "Semiparametric Bayesian Inference for Phage Display Data," Biometrics, The International Biometric Society, vol. 69(1), pages 174-183, March.
    12. repec:jss:jstsof:40:i05 is not listed on IDEAS
    13. Nan Zheng & Brajendra C. Sutradhar, 2018. "Inferences in semi-parametric dynamic mixed models for longitudinal count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 215-247, February.
    14. Fernando A. Quintana & Peter Müller & Gary L. Rosner & Mary V. Relling, 2008. "A semiparametric Bayesian model for repeatedly repeated binary outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 419-431, September.
    15. Ramsés H. Mena & Stephen G. Walker, 2005. "Stationary Autoregressive Models via a Bayesian Nonparametric Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 789-805, November.
    16. Nehla Debbabi & Marie Kratz & Mamadou Mboup, 2016. "A self-calibrating method for heavy tailed data modeling : Application in neuroscience and finance," Working Papers hal-01424298, HAL.
    17. Abel Rodr�guez & Enrique ter Horst, 2011. "Measuring expectations in options markets: an application to the S&P500 index," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1393-1405, July.
    18. José Santos & M. Neves, 2008. "A local maximum likelihood estimator for Poisson regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 257-270, November.
    19. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Instrumental Variable Estimation with Many Weak Instruments," Discussion Paper Series DP2018-14, Research Institute for Economics & Business Administration, Kobe University.
    20. Richard L Warr & David H Collins, 2014. "Bayesian nonparametric models for combining heterogeneous reliability data," Journal of Risk and Reliability, , vol. 228(2), pages 166-175, April.
    21. Simon Grant & Idione Meneghel & Rabee Tourky, 2022. "Learning under unawareness," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(2), pages 447-475, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:4:p:2110-2128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.