IDEAS home Printed from https://ideas.repec.org/a/bla/ecnote/v44y2015i1p1-28.html
   My bibliography  Save this article

Robust Capital Requirements with Model Risk

Author

Listed:
  • Pauline Barrieu
  • Claudia Ravanelli

Abstract

type="main" xml:lang="en"> We study capital requirements when the bank's econometric model only approximately describes the dynamics of portfolio returns—which is virtually always the case in practice. We derive a simple formula for capital requirements based on a first-order Taylor expansion of the Value at Risk around a ‘model confidence’ parameter. This formula allows to reflect the bank's confidence in the econometric model into capital requirements in a theoretically consistent manner. Numerical and empirical applications show that our formula provides valuable information for quantifying capital requirements under model risk.

Suggested Citation

  • Pauline Barrieu & Claudia Ravanelli, 2015. "Robust Capital Requirements with Model Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 44(1), pages 1-28, February.
  • Handle: RePEc:bla:ecnote:v:44:y:2015:i:1:p:1-28
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
    2. Cosma, Simona & Rimo, Giuseppe & Torluccio, Giuseppe, 2023. "Knowledge mapping of model risk in banking," International Review of Financial Analysis, Elsevier, vol. 89(C).
    3. Gourieroux, Christian & Tiomo, Andre, 2019. "The Evaluation of Model Risk for Probability of Default and Expected Loss," MPRA Paper 95795, University Library of Munich, Germany.
    4. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    5. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecnote:v:44:y:2015:i:1:p:1-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0391-5026 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.