IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i1p284-289.html
   My bibliography  Save this article

Merging experts' opinions: A Bayesian hierarchical model with mixture of prior distributions

Author

Listed:
  • Rufo, M.J.
  • Pérez, C.J.
  • Martín, J.

Abstract

In this paper, a general approach is proposed to address a full Bayesian analysis for the class of quadratic natural exponential families in the presence of several expert sources of prior information. By expressing the opinion of each expert as a conjugate prior distribution, a mixture model is used by the decision maker to arrive at a consensus of the sources. A hyperprior distribution on the mixing parameters is considered and a procedure based on the expected Kullback-Leibler divergence is proposed to analytically calculate the hyperparameter values. Next, the experts' prior beliefs are calibrated with respect to the combined posterior belief over the quantity of interest by using expected Kullback-Leibler divergences, which are estimated with a computationally low-cost method. Finally, it is remarkable that the proposed approach can be easily applied in practice, as it is shown with an application.

Suggested Citation

  • Rufo, M.J. & Pérez, C.J. & Martín, J., 2010. "Merging experts' opinions: A Bayesian hierarchical model with mixture of prior distributions," European Journal of Operational Research, Elsevier, vol. 207(1), pages 284-289, November.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:284-289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00304-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Gutiérrez-Peña & A. Smith & José Bernardo & Guido Consonni & Piero Veronese & E. George & F. Girón & M. Martínez & G. Letac & Carl Morris, 1997. "Exponential and bayesian conjugate families: Review and extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 1-90, June.
    2. Irene Valsecchi, 2008. "Learning from Experts," Working Papers 2008.35, Fondazione Eni Enrico Mattei.
    3. Korhonen, Pekka & Moskowitz, Herbert & Wallenius, Jyrki, 1992. "Multiple criteria decision support - A review," European Journal of Operational Research, Elsevier, vol. 63(3), pages 361-375, December.
    4. John C. Liechty, 2004. "Bayesian correlation estimation," Biometrika, Biometrika Trust, vol. 91(1), pages 1-14, March.
    5. Nicolas Bousquet, 2008. "Diagnostics of prior-data agreement in applied Bayesian analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1011-1029.
    6. Valsecchi, Irene, 2008. "Learning from Experts," International Energy Markets Working Papers 36756, Fondazione Eni Enrico Mattei (FEEM).
    7. Rufo, M.J. & Pérez, C.J. & Martín, J., 2009. "Local parametric sensitivity for mixture models of lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1238-1244.
    8. Szwed, P. & Dorp, J. Rene van & Merrick, J.R.W. & Mazzuchi, T.A. & Singh, A., 2006. "A Bayesian paired comparison approach for relative accident probability assessment with covariate information," European Journal of Operational Research, Elsevier, vol. 169(1), pages 157-177, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    2. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rufo, M.J. & Martín, J. & Pérez, C.J., 2009. "Inference on exponential families with mixture of prior distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3271-3280, July.
    2. J. Granat & M. Makowski, 1998. "ISAAP - Interactive Specification and Analysis of Aspiration-Based Preferences," Working Papers ir98052, International Institute for Applied Systems Analysis.
    3. Haapalinna, Ilkka, 2003. "How to allocate funds within the army," European Journal of Operational Research, Elsevier, vol. 144(1), pages 224-233, January.
    4. Bo Cai & David B. Dunson, 2006. "Bayesian Covariance Selection in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 62(2), pages 446-457, June.
    5. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    6. Nadja A. Leith & Richard E. Chandler, 2010. "A framework for interpreting climate model outputs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 279-296, March.
    7. Salo, Ahti A., 1995. "Interactive decision aiding for group decision support," European Journal of Operational Research, Elsevier, vol. 84(1), pages 134-149, July.
    8. Pitt, M.K. & Walker, S.G., 2001. "Construction of Stationary Time Series via the Giggs Sampler with Application to Volatility Models," The Warwick Economics Research Paper Series (TWERPS) 595, University of Warwick, Department of Economics.
    9. Kalaba, Robert & Tesfatsion, Leigh, 1996. "A multicriteria approach to model specification and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 21(2), pages 193-214, February.
    10. Viktor DOLIA & Irina ENGLEZI, 2015. "Determine the safe transport of dangerous goods route," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 10(1), pages 31-44, March.
    11. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    12. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    13. Santos Peñate, D.R. & Suárez-Vega, R. & Dorta González, P., 2001. "Un modelo de decisión multicriterio para la localización de centros de tratamiento de residuos," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 17, pages 163-182, Abril.
    14. Komaki, Fumiyasu, 2009. "Bayesian predictive densities based on superharmonic priors for the 2-dimensional Wishart model," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2137-2154, November.
    15. Paolo Giordani & Xiuyan Mun & Robert Kohn, 2012. "Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 154-192, December.
    16. Huyên Pham & Xiaoli Wei & Chao Zhou, 2022. "Portfolio diversification and model uncertainty: A robust dynamic mean‐variance approach," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 349-404, January.
    17. Luis Nieto-Barajas & Eduardo Gutiérrez-Peña, 2022. "General dependence structures for some models based on exponential families with quadratic variance functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 699-716, September.
    18. Lean Yu & Shouyang Wang & Fenghua Wen & Kin Lai, 2012. "Genetic algorithm-based multi-criteria project portfolio selection," Annals of Operations Research, Springer, vol. 197(1), pages 71-86, August.
    19. Hornik, Kurt & Grün, Bettina, 2014. "On standard conjugate families for natural exponential families with bounded natural parameter space," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 14-24.
    20. Vetschera, Rudolf, 1992. "Composite alternatives in group decision support," Discussion Papers, Series I 262, University of Konstanz, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:1:p:284-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.