IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v9y2009i8p925-935.html
   My bibliography  Save this article

MaxVaR for non-normal and heteroskedastic returns

Author

Listed:
  • Malay Bhattacharyya
  • Nityanand Misra
  • Bharat Kodase

Abstract

In this work we propose Monte Carlo simulation models for dynamically computing MaxVaR for a financial return series. This dynamic MaxVaR takes into account the time-varying volatility as well as non-normality of returns or innovations. We apply this methodology to five stock market indices. To validate the proposed methods we compute the number of MaxVaR violations and compare them with the expected number. We also compute the MaxVaR-to-VaR ratio and find that, on average, dynamic MaxVaR exceeds dynamic VaR by 5-7% at the 1% significance level, and by 12-14% at the 5% significance level for the selected indices.

Suggested Citation

  • Malay Bhattacharyya & Nityanand Misra & Bharat Kodase, 2009. "MaxVaR for non-normal and heteroskedastic returns," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 925-935.
  • Handle: RePEc:taf:quantf:v:9:y:2009:i:8:p:925-935
    DOI: 10.1080/14697680802595684
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680802595684
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680802595684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saswat Patra & Malay Bhattacharyya, 2020. "How Risky Are the Options? A Comparison with the Underlying Stock Using MaxVaR as a Risk Measure," Risks, MDPI, vol. 8(3), pages 1-17, July.
    2. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    3. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    4. Akhtaruzzaman, Md & Banerjee, Ameet Kumar & Boubaker, Sabri & Moussa, Faten, 2023. "Does green improve portfolio optimisation?," Energy Economics, Elsevier, vol. 124(C).
    5. Sree Vinutha Venkataraman & S. V. D. Nageswara Rao, 2016. "Estimation of dynamic VaR using JSU and PIV distributions," Risk Management, Palgrave Macmillan, vol. 18(2), pages 111-134, August.
    6. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    7. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    8. Bhattacharyya, Malay & Madhav R, Siddarth, 2012. "A Comparison of VaR Estimation Procedures for Leptokurtic Equity Index Returns," MPRA Paper 54189, University Library of Munich, Germany.
    9. Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
    10. Christos E. Kountzakis & Damiano Rossello, 2022. "Monetary risk measures for stochastic processes via Orlicz duality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 35-56, June.
    11. Stavros Stavroyiannis, 2016. "Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution," Papers 1602.05749, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:9:y:2009:i:8:p:925-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.