Loss Reserving Models: Granular and Machine Learning Forms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
- Taylor, Greg & McGuire, Gráinne & Sullivan, James, 2008. "Individual Claim Loss Reserving Conditioned by Case Estimates," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 215-256, September.
- Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2013.
"Individual Loss Reserving With The Multivariate Skew Normal Framework,"
ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 399-428, September.
- Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2013. "Individual Loss Reserving with the Multivariate Skew Normal Framework," LIDAM Reprints ISBA 2013028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hesselager, Ole, 1994. "A Markov Model for Loss Reserving," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 183-193, November.
- Gao, Guangyuan & Meng, Shengwang, 2018. "Stochastic Claims Reserving Via A Bayesian Spline Model With Random Loss Ratio Effects," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 55-88, January.
- Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
- Taylor, Greg, 2011. "Maximum Likelihood and Estimation Efficiency of the Chain Ladder," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 131-155, May.
- Venter, Gary & Şahın, Şule, 2018. "Parsimonious Parameterization Of Age-Period-Cohort Models By Bayesian Shrinkage - Erratum," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 479-479, January.
- Venter, Gary & Şahın, Şule, 2018. "Parsimonious Parameterization Of Age-Period-Cohort Models By Bayesian Shrinkage," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 89-110, January.
- Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
- Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
- Greg Taylor, 2019. "Risks Special Issue on “Granular Models and Machine Learning Models”," Risks, MDPI, vol. 8(1), pages 1-2, December.
- Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
- Lu Xiong & Vajira Manathunga & Jiyao Luo & Nicholas Dennison & Ruicheng Zhang & Zhenhai Xiang, 2023. "AutoReserve: A Web-Based Tool for Personal Auto Insurance Loss Reserving with Classical and Machine Learning Methods," Risks, MDPI, vol. 11(7), pages 1-17, July.
- Daniel J. Geiger & Akim Adekpedjou, 2022. "Analysis of IBNR Liabilities with Interevent Times Depending on Claim Counts," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 815-829, June.
- Nataliya Chukhrova & Arne Johannssen, 2021. "Stochastic Claims Reserving Methods with State Space Representations: A Review," Risks, MDPI, vol. 9(11), pages 1-55, November.
- Simon CK Lee, 2020. "Delta Boosting Implementation of Negative Binomial Regression in Actuarial Pricing," Risks, MDPI, vol. 8(1), pages 1-21, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
- Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
- Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
- Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
- Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
- Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019.
"Modeling the number of hidden events subject to observation delay,"
European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
- Jonas Crevecoeur & Katrien Antonio & Roel Verbelen, 2018. "Modeling the number of hidden events subject to observation delay," Papers 1801.02935, arXiv.org, revised Mar 2019.
- Benjamin Avanzi & Gregory Clive Taylor & Melantha Wang & Bernard Wong, 2020. "SynthETIC: an individual insurance claim simulator with feature control," Papers 2008.05693, arXiv.org, revised Aug 2021.
- Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
- Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
- Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
- Andrea Gabrielli & Mario V. Wüthrich, 2018. "An Individual Claims History Simulation Machine," Risks, MDPI, vol. 6(2), pages 1-32, March.
- Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
- Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
- Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
- Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
- Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
- Arthur Charpentier & Mathieu Pigeon, 2016.
"Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective),"
Risks, MDPI, vol. 4(2), pages 1-18, May.
- Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Working Papers hal-01280033, HAL.
- Taylor, Greg, 2021. "A special Tweedie sub-family with application to loss reserving prediction error," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 262-288.
- Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014.
"Individual loss reserving using paid–incurred data,"
Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
- Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid-incurred data," LIDAM Discussion Papers ISBA 2014014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
More about this item
Keywords
granular models; loss reserving; machine learning; neural networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:82-:d:250013. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.