IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v48y2018i01p89-110_00.html
   My bibliography  Save this article

Parsimonious Parameterization Of Age-Period-Cohort Models By Bayesian Shrinkage

Author

Listed:
  • Venter, Gary
  • Şahın, Şule

Abstract

Age-period-cohort models used in life and general insurance can be over-parameterized, and actuaries have used several methods to avoid this, such as cubic splines. Regularization is a statistical approach for avoiding over-parameterization, and it can reduce estimation and predictive variances compared to MLE. In Markov Chain Monte Carlo (MCMC) estimation, regularization is accomplished by the use of mean-zero priors, and the degree of parsimony can be optimized by numerically efficient out-of-sample cross-validation. This provides a consistent framework for comparing a variety of regularized MCMC models, such as those built with cubic splines, linear splines (as ours is), and the limiting case of non-regularized estimation. We apply this to the multiple-trend model of Hunt and Blake (2014).

Suggested Citation

  • Venter, Gary & Şahın, Şule, 2018. "Parsimonious Parameterization Of Age-Period-Cohort Models By Bayesian Shrinkage," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 89-110, January.
  • Handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:89-110_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036117000216/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Barigou, Karim & Goffard, Pierre-Olivier & Loisel, Stéphane & Salhi, Yahia, 2023. "Bayesian model averaging for mortality forecasting using leave-future-out validation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 674-690.
    3. Greg Taylor, 2019. "Loss Reserving Models: Granular and Machine Learning Forms," Risks, MDPI, vol. 7(3), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:89-110_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.