IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i7p131-d1194165.html
   My bibliography  Save this article

AutoReserve: A Web-Based Tool for Personal Auto Insurance Loss Reserving with Classical and Machine Learning Methods

Author

Listed:
  • Lu Xiong

    (Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

  • Vajira Manathunga

    (Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

  • Jiyao Luo

    (Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

  • Nicholas Dennison

    (Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

  • Ruicheng Zhang

    (Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

  • Zhenhai Xiang

    (Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

Abstract

In this paper, we developed a Shiny-based application called AutoReserve. This application serves as a tool used for a variety of types of loss reserving. The primary target audience of the app is personal auto actuaries, who are professionals in the insurance industry specializing in assessing risks and determining insurance premiums for personal vehicles. However, the app is not limited exclusively to actuaries. Other individuals or entities, such as insurance companies, researchers, or analysts, who have access to the necessary data and require insights or analysis related to personal auto insurance, can also benefit from using the app. It is the first web-based application of its kind that is free to use and deployable from the personal computer or mobile device. AutoReserve is a software solution that caters to the needs of insurance professionals where only a few existing web-based applications are available. The application is divided into three parts: a summary of the loss data, a classical loss reserving tool, and a machine learning loss reserving tool. Each component of the application functions differently and allows for inputs from the user to analyze the provided loss data. The user, in other words, individuals or entities who utilize the Auto Reserve application, can then use the outputs for these three sections to improve his or her risk management or loss reserving process. AutoReserve is unique compared to other loss reserving tools because of its ability to employ both traditional, spreadsheet-based and modern, machine-learning-based loss reserving tools. AutoReserve is accessible on the web. The app is currently usable and is still undergoing frequent updates with new features and bug fixes.

Suggested Citation

  • Lu Xiong & Vajira Manathunga & Jiyao Luo & Nicholas Dennison & Ruicheng Zhang & Zhenhai Xiang, 2023. "AutoReserve: A Web-Based Tool for Personal Auto Insurance Loss Reserving with Classical and Machine Learning Methods," Risks, MDPI, vol. 11(7), pages 1-17, July.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:7:p:131-:d:1194165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/7/131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/7/131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haastrup, Svend & Arjas, Elja, 1996. "Claims Reserving in Continuous Time; A Nonparametric Bayesian Approach," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 139-164, November.
    2. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    3. Renshaw, A.E. & Verrall, R.J., 1998. "A Stochastic Model Underlying the Chain-Ladder Technique," British Actuarial Journal, Cambridge University Press, vol. 4(4), pages 903-923, October.
    4. Spedicato, Giorgio Alfredo, 2013. "The lifecontingencies Package: Performing Financial and Actuarial Mathematics Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i10).
    5. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    6. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    7. Alina Kulustayeva & Aigul Jondelbayeva & Azhar Nurmagambetova & Aliya Dossayeva & Aliya Bikteubayeva, 2020. "Financial data reporting analysis of the factors influencing on profitability for insurance companies," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 2394-2406, March.
    8. Shi, Peng & Frees, Edward W., 2011. "Dependent Loss Reserving using Copulas," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 449-486, November.
    9. Jinlong Huang & Chunjuan Qiu & Xianyi Wu, 2015. "Stochastic Loss Reserving in Discrete Time: Individual vs. Aggregate Data Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(10), pages 2180-2206, May.
    10. Nair, Anand & Closs, David J., 2006. "An examination of the impact of coordinating supply chain policies and price markdowns on short lifecycle product retail performance," International Journal of Production Economics, Elsevier, vol. 102(2), pages 379-392, August.
    11. Greg Taylor, 2019. "Loss Reserving Models: Granular and Machine Learning Forms," Risks, MDPI, vol. 7(3), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    2. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    3. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    4. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    5. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    6. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    7. Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
    8. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    9. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    10. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    11. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    12. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    13. Yixing Zhao & Rogemar Mamon & Heng Xiong, 2021. "Claim reserving for insurance contracts in line with the International Financial Reporting Standards 17: a new paid-incurred chain approach to risk adjustments," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    14. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    15. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    16. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    17. Greg Taylor, 2019. "Risks Special Issue on “Granular Models and Machine Learning Models”," Risks, MDPI, vol. 8(1), pages 1-2, December.
    18. Daniel J. Geiger & Akim Adekpedjou, 2022. "Analysis of IBNR Liabilities with Interevent Times Depending on Claim Counts," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 815-829, June.
    19. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Jun 2024.
    20. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:7:p:131-:d:1194165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.