IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i11p198-d672160.html
   My bibliography  Save this article

Stochastic Claims Reserving Methods with State Space Representations: A Review

Author

Listed:
  • Nataliya Chukhrova

    (Faculty of Business Administration, University of Hamburg, 20146 Hamburg, Germany)

  • Arne Johannssen

    (Faculty of Business Administration, University of Hamburg, 20146 Hamburg, Germany)

Abstract

Often, the claims reserves exceed the available equity of non-life insurance companies and a change in the claims reserves by a small percentage has a large impact on the annual accounts. Therefore, it is of vital importance for any non-life insurer to handle claims reserving appropriately. Although claims data are time series data, the majority of the proposed (stochastic) claims reserving methods is not based on time series models. Among the time series models, state space models combined with Kalman filter learning algorithms have proven to be very advantageous as they provide high flexibility in modeling and an accurate detection of the temporal dynamics of a system. Against this backdrop, this paper aims to provide a comprehensive review of stochastic claims reserving methods that have been developed and analyzed in the context of state space representations. For this purpose, relevant articles are collected and categorized, and the contents are explained in detail and subjected to a conceptual comparison.

Suggested Citation

  • Nataliya Chukhrova & Arne Johannssen, 2021. "Stochastic Claims Reserving Methods with State Space Representations: A Review," Risks, MDPI, vol. 9(11), pages 1-55, November.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:11:p:198-:d:672160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/11/198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/11/198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piet de Jong, 2006. "Forecasting Runoff Triangles," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 28-38.
    2. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
    3. Ioannis Ntzoufras & Petros Dellaportas, 2002. "Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty," North American Actuarial Journal, Taylor & Francis Journals, vol. 6(1), pages 113-125.
    4. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    5. Atherino, Rodrigo & Pizzinga, Adrian & Fernandes, Cristiano, 2010. "A Row-Wise Stacking of the Runoff Triangle: State Space Alternatives for IBNR Reserve Prediction," ASTIN Bulletin, Cambridge University Press, vol. 40(2), pages 917-946, November.
    6. Hendrych, Radek & Cipra, Tomas, 2021. "Applying State Space Models To Stochastic Claims Reserving," ASTIN Bulletin, Cambridge University Press, vol. 51(1), pages 267-301, January.
    7. Nataliya Chukhrova & Arne Johannssen, 2021. "Kalman Filter Learning Algorithms and State Space Representations for Stochastic Claims Reserving," Risks, MDPI, vol. 9(6), pages 1-5, June.
    8. Hertig, Joakim, 1985. "A Statistical Approach to IBNR-Reserves in Marine Reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 171-183, November.
    9. Verrall, R.J., 1994. "A Method for Modelling Varying Run-Off Evolutions in Claims Reserving," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 325-332, November.
    10. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    11. Greg Taylor, 2019. "Loss Reserving Models: Granular and Machine Learning Forms," Risks, MDPI, vol. 7(3), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholamreza Hesamian & Arne Johannssen & Nataliya Chukhrova, 2023. "A Three-Stage Nonparametric Kernel-Based Time Series Model Based on Fuzzy Data," Mathematics, MDPI, vol. 11(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Leonardo Costa & Adrian Pizzinga, 2020. "State‐space models for predicting IBNR reserve in row‐wise ordered runoff triangles: Calendar year IBNR reserves & tail effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 438-448, April.
    3. Benjamin Avanzi & Gregory Clive Taylor & Phuong Anh Vu & Bernard Wong, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Papers 2004.06880, arXiv.org.
    4. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
    5. Nataliya Chukhrova & Arne Johannssen, 2021. "Kalman Filter Learning Algorithms and State Space Representations for Stochastic Claims Reserving," Risks, MDPI, vol. 9(6), pages 1-5, June.
    6. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    7. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    8. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    9. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    10. D Kuang & Bent Nielsen & J P Nielsen, 2013. "The Geometric Chain-Ladder," Economics Papers 2013-W11, Economics Group, Nuffield College, University of Oxford.
    11. Helena Jasiulewicz, 2013. "Przestrzeń stanów i filtr Kalmana w teorii ubezpieczeń," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 31, pages 101-116.
    12. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Economics Papers 2018-W02, Economics Group, Nuffield College, University of Oxford.
    13. Corneliu Cristian Bente, 2017. "Actuarial Estimation Of Technical Reserves In Insurance Companies. Basic Chain Ladder Method," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 227-234, July.
    14. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    15. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    16. Boratyńska, Agata, 2017. "Robust Bayesian estimation and prediction of reserves in exponential model with quadratic variance function," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 135-140.
    17. Stephens, David A. & Crowder, Martin J. & Dellaportas, Petros, 2004. "Quantification of automobile insurance liability: a Bayesian failure time approach," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 1-21, February.
    18. Adrian Pizzinga & Marcelo Fernandes, 2021. "Extensions to the invariance property of maximum likelihood estimation for affine‐transformed state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 355-371, May.
    19. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    20. Boj del Val, Eva & Costa Cor, Teresa, 2017. "Provisions for claims outstanding, incurred but not reported, with generalized linear models: prediction error formulated according to calendar year," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:11:p:198-:d:672160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.