IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i3p73-d159090.html
   My bibliography  Save this article

Company Value with Ruin Constraint in Lundberg Models

Author

Listed:
  • Christian Hipp

    (Institute of Finance, Banking and Insurance, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

Abstract

In this note we study the problem of company values with a ruin constraint in classical continuous time Lundberg models. For this, we adapt the methods and results for discrete de Finetti models to time and state continuous Lundberg models. The policy improvement method works also in continuous models, but it is slow and needs discretization. Better results can be obtained faster using the barrier method for discrete models which can be adjusted for Lundberg models. In this method, dividend strategies are considered which are based on barrier sequences. In our continuous state model, optimal barriers can be computed with the Lagrange method leading to a backward recursion scheme. The resulting dividend strategies will not always be optimal: in the case without ruin constraint, there are examples in which band strategies are superior. We also develop equations for optimal control of dynamic reinsurance to maximize the company value under a ruin constraint. These identify the optimal reinsurance strategy in no action regions and allow for an interactive computation of the value function. We apply the methods in a numerical example with exponential claims.

Suggested Citation

  • Christian Hipp, 2018. "Company Value with Ruin Constraint in Lundberg Models," Risks, MDPI, vol. 6(3), pages 1-15, July.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:73-:d:159090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/3/73/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/3/73/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hernández, Camilo & Junca, Mauricio & Moreno-Franco, Harold, 2018. "A time of ruin constrained optimal dividend problem for spectrally one-sided Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 57-68.
    2. Hipp, Christian & Vogt, Michael, 2003. "Optimal Dynamic XL Reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 193-207, November.
    3. Christian Hipp, 2018. "Company Value with Ruin Constraint in a Discrete Model," Risks, MDPI, vol. 6(1), pages 1-14, January.
    4. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    5. Dickson, David C.M. & Waters, Howard R., 2006. "Optimal Dynamic Reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 415-432, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
    2. Tautvydas Kuras & Jonas Sprindys & Jonas Šiaulys, 2020. "Martingale Approach to Derive Lundberg-Type Inequalities," Mathematics, MDPI, vol. 8(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    2. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    3. Ekaterina Bulinskaya & Julia Gusak & Anastasia Muromskaya, 2015. "Discrete-time Insurance Model with Capital Injections and Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 899-914, December.
    4. Christian Hipp, 2020. "Optimal Dividend Payment in De Finetti Models: Survey and New Results and Strategies," Risks, MDPI, vol. 8(3), pages 1-27, September.
    5. Yangmin Zhong & Huaping Huang, 2023. "Cash Flow Optimization on Insurance: An Application of Fixed-Point Theory," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    6. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    7. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    8. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.
    9. Julia Eisenberg & Paul Kruhner, 2018. "Suboptimal Control of Dividends under Exponential Utility," Papers 1809.01983, arXiv.org, revised Jan 2019.
    10. Wenyuan Wang & Xueyuan Wu & Cheng Chi, 2019. "Optimal implementation delay of taxation with trade-off for L\'{e}vy risk Processes," Papers 1910.08158, arXiv.org.
    11. Philipp Lukas Strietzel & Henriette Elisabeth Heinrich, 2022. "Optimal Dividends for a Two-Dimensional Risk Model with Simultaneous Ruin of Both Branches," Risks, MDPI, vol. 10(6), pages 1-23, June.
    12. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    13. J. Cerda-Hernandez & A. Sikov & A. Ramos, 2022. "An optimal investment strategy aimed at maximizing the expected utility across all intermediate capital levels," Papers 2207.02947, arXiv.org, revised Jun 2024.
    14. Hernández, Camilo & Junca, Mauricio, 2015. "Optimal dividend payments under a time of ruin constraint: Exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 136-142.
    15. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    16. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    17. Pelsser, Antoon A.J. & Laeven, Roger J.A., 2013. "Optimal dividends and ALM under unhedgeable risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 515-523.
    18. Philipp Lukas Strietzel & Anita Behme, 2022. "Moments of the Ruin Time in a Lévy Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3075-3099, December.
    19. Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
    20. Başak Bulut Karageyik & Şule Şahin, 2016. "Optimal Retention Level for Infinite Time Horizons under MADM," Risks, MDPI, vol. 5(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:73-:d:159090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.