IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i1p1-d125805.html
   My bibliography  Save this article

Company Value with Ruin Constraint in a Discrete Model

Author

Listed:
  • Christian Hipp

    (Karlsruhe Institute of Technology, Karlsruhe 76131, Germany)

Abstract

Optimal dividend payment under a ruin constraint is a two objective control problem which—in simple models—can be solved numerically by three essentially different methods. One is based on a modified Bellman equation and the policy improvement method (see Hipp (2003)). In this paper we use explicit formulas for running allowed ruin probabilities which avoid a complete search and speed up and simplify the computation. The second is also a policy improvement method, but without the use of a dynamic equation (see Hipp (2016)). It is based on closed formulas for first entry probabilities and discount factors for the time until first entry. Third a new, faster and more intuitive method which uses appropriately chosen barrier levels and a closed formula for the corresponding dividend value. Using the running allowed ruin probabilities, a simple test for admissibility—concerning the ruin constraint—is given. All these methods work for the discrete De Finetti model and are applied in a numerical example. The non stationary Lagrange multiplier method suggested in Hipp (2016), Section 2.2.2, also yields optimal dividend strategies which differ from those in all other methods, and Lagrange gaps are present here.

Suggested Citation

  • Christian Hipp, 2018. "Company Value with Ruin Constraint in a Discrete Model," Risks, MDPI, vol. 6(1), pages 1-14, January.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:1:p:1-:d:125805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    2. Albrecher, Hansjörg & Thonhauser, Stefan, 2008. "Optimal dividend strategies for a risk process under force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 134-149, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Hipp, 2018. "Company Value with Ruin Constraint in Lundberg Models," Risks, MDPI, vol. 6(3), pages 1-15, July.
    2. Christian Hipp, 2020. "Optimal Dividend Payment in De Finetti Models: Survey and New Results and Strategies," Risks, MDPI, vol. 8(3), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    2. Feng, Yang & Siu, Tak Kuen & Zhu, Jinxia, 2024. "Optimal payout strategies when Bruno de Finetti meets model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 148-164.
    3. Yin, Chuancun & Yuen, Kam Chuen, 2011. "Optimality of the threshold dividend strategy for the compound Poisson model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1841-1846.
    4. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2020. "Optimal ratcheting of dividends in a Brownian risk model," Papers 2012.10632, arXiv.org.
    5. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    6. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    7. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    8. Benjamin Avanzi & Debbie Kusch Falden & Mogens Steffensen, 2022. "Stable Dividends under Linear-Quadratic Optimization," Papers 2210.03494, arXiv.org.
    9. Julia Eisenberg & Paul Kruhner, 2018. "Suboptimal Control of Dividends under Exponential Utility," Papers 1809.01983, arXiv.org, revised Jan 2019.
    10. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    11. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    12. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.
    13. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    14. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    15. Martin Hunting & Jostein Paulsen, 2013. "Optimal dividend policies with transaction costs for a class of jump-diffusion processes," Finance and Stochastics, Springer, vol. 17(1), pages 73-106, January.
    16. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.
    17. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    18. Avanzi, Benjamin & Tu, Vincent & Wong, Bernard, 2014. "On optimal periodic dividend strategies in the dual model with diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 210-224.
    19. Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
    20. Philipp Lukas Strietzel & Henriette Elisabeth Heinrich, 2022. "Optimal Dividends for a Two-Dimensional Risk Model with Simultaneous Ruin of Both Branches," Risks, MDPI, vol. 10(6), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:1:p:1-:d:125805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.