IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v36y2006i02p415-432_01.html
   My bibliography  Save this article

Optimal Dynamic Reinsurance

Author

Listed:
  • Dickson, David C.M.
  • Waters, Howard R.

Abstract

We consider a classical surplus process where the insurer can choose a different level of reinsurance at the start of each year. We assume the insurer’s objective is to minimise the probability of ruin up to some given time horizon, either in discrete or continuous time. We develop formulae for ruin probabilities under the optimal reinsurance strategy, i.e. the optimal retention each year as the surplus changes and the period until the time horizon shortens. For our compound Poisson process, it is not feasible to evaluate these formulae, and hence determine the optimal strategies, in any but the simplest cases. We show how we can determine the optimal strategies by approximating the (compound Poisson) aggregate claims distributions by translated gamma distributions, and, alternatively, by approximating the compound Poisson process by a translated gamma process.

Suggested Citation

  • Dickson, David C.M. & Waters, Howard R., 2006. "Optimal Dynamic Reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 415-432, November.
  • Handle: RePEc:cup:astinb:v:36:y:2006:i:02:p:415-432_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100014574/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Bulinskaya & Julia Gusak & Anastasia Muromskaya, 2015. "Discrete-time Insurance Model with Capital Injections and Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 899-914, December.
    2. Christian Hipp, 2018. "Company Value with Ruin Constraint in Lundberg Models," Risks, MDPI, vol. 6(3), pages 1-15, July.
    3. Zongxia Liang & Xiaodong Luo, 2024. "Stackelberg reinsurance and premium decisions with MV criterion and irreversibility," Papers 2402.11580, arXiv.org.
    4. Dickson, David C.M., 2012. "The joint distribution of the time to ruin and the number of claims until ruin in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 334-337.
    5. Başak Bulut Karageyik & Şule Şahin, 2017. "Determination of the Optimal Retention Level Based on Different Measures," JRFM, MDPI, vol. 10(1), pages 1-21, January.
    6. Başak Bulut Karageyik & Şule Şahin, 2016. "Optimal Retention Level for Infinite Time Horizons under MADM," Risks, MDPI, vol. 5(1), pages 1-24, December.
    7. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:36:y:2006:i:02:p:415-432_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.