IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i6p116-d830383.html
   My bibliography  Save this article

Optimal Dividends for a Two-Dimensional Risk Model with Simultaneous Ruin of Both Branches

Author

Listed:
  • Philipp Lukas Strietzel

    (Institut für Mathematische Stochastik, Technische Universität Dresden, 01062 Dresden, Germany
    These authors contributed equally to this work.)

  • Henriette Elisabeth Heinrich

    (Institut für Mathematische Stochastik, Technische Universität Dresden, 01062 Dresden, Germany
    These authors contributed equally to this work.)

Abstract

We consider the optimal dividend problem in the so-called degenerate bivariate risk model under the assumption that the surplus of one branch may become negative. More specific, we solve the stochastic control problem of maximizing discounted dividends until simultaneous ruin of both branches of an insurance company by showing that the optimal value function satisfies a certain Hamilton–Jacobi–Bellman (HJB) equation. Further, we prove that the optimal value function is the smallest viscosity solution of said HJB equation, satisfying certain growth conditions. Under some additional assumptions, we show that the optimal strategy lies within a certain subclass of all admissible strategies and reduce the two-dimensional control problem to a one-dimensional one. The results are illustrated by a numerical example and Monte Carlo simulated value functions.

Suggested Citation

  • Philipp Lukas Strietzel & Henriette Elisabeth Heinrich, 2022. "Optimal Dividends for a Two-Dimensional Risk Model with Simultaneous Ruin of Both Branches," Risks, MDPI, vol. 10(6), pages 1-23, June.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:116-:d:830383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/6/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/6/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irmina Czarna & Zbigniew Palmowski, 2009. "De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process," Papers 0906.2100, arXiv.org, revised Feb 2011.
    2. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    3. Azcue, Pablo & Muler, Nora, 2012. "Optimal dividend policies for compound Poisson processes: The case of bounded dividend rates," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 26-42.
    4. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    5. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    6. Pablo Azcue & Nora Muler, 2010. "Optimal investment policy and dividend payment strategy in an insurance company," Papers 1010.4988, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    2. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2015. "Optimal Dividend Strategies for Two Collaborating Insurance Companies," Papers 1505.03980, arXiv.org.
    3. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    4. Julia Eisenberg & Paul Kruhner, 2018. "Suboptimal Control of Dividends under Exponential Utility," Papers 1809.01983, arXiv.org, revised Jan 2019.
    5. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    6. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    7. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    8. Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
    9. Zhuo Jin & Huafu Liao & Yue Yang & Xiang Yu, 2019. "Optimal Dividend Strategy for an Insurance Group with Contagious Default Risk," Papers 1909.09511, arXiv.org, revised Oct 2020.
    10. Koch-Medina, Pablo & Moreno-Bromberg, Santiago & Ravanelli, Claudia & Šikić, Mario, 2021. "Revisiting optimal investment strategies of value-maximizing insurance firms," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 131-151.
    11. Feng, Yang & Siu, Tak Kuen & Zhu, Jinxia, 2024. "Optimal payout strategies when Bruno de Finetti meets model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 148-164.
    12. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2020. "A Perturbation Approach to Optimal Investment, Liability Ratio, and Dividend Strategies," Papers 2012.06703, arXiv.org, revised May 2021.
    13. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2014. "Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle," Economic Modelling, Elsevier, vol. 37(C), pages 53-64.
    14. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    15. Yin, Chuancun & Yuen, Kam Chuen, 2011. "Optimality of the threshold dividend strategy for the compound Poisson model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1841-1846.
    16. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2020. "Optimal ratcheting of dividends in a Brownian risk model," Papers 2012.10632, arXiv.org.
    17. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    18. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    19. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    20. Yin, Chuancun & Wen, Yuzhen, 2013. "Optimal dividend problem with a terminal value for spectrally positive Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 769-773.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:116-:d:830383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.