IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-022-09967-w.html
   My bibliography  Save this article

Moments of the Ruin Time in a Lévy Risk Model

Author

Listed:
  • Philipp Lukas Strietzel

    (Technische Universität Dresden)

  • Anita Behme

    (Technische Universität Dresden)

Abstract

We derive formulas for the moments of the ruin time in a Lévy risk model and use these to determine the asymptotic behavior of the moments of the ruin time as the initial capital tends to infinity. In the special case of the perturbed Cramér-Lundberg model with phase-type or even exponentially distributed claims, we explicitly compute the first two moments of the ruin time. All our considerations distinguish between the profitable and the unprofitable setting.

Suggested Citation

  • Philipp Lukas Strietzel & Anita Behme, 2022. "Moments of the Ruin Time in a Lévy Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3075-3099, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09967-w
    DOI: 10.1007/s11009-022-09967-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09967-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09967-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wing Yan Lee & Gordon E. Willmot, 2016. "The moments of the time to ruin in dependent Sparre Andersen models with Coxian claim sizes," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(6), pages 550-564, July.
    2. Dickson, David C.M. & Waters, Howard R., 2002. "The Distribution of the time to Ruin in the Classical Risk Model," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 299-313, November.
    3. Frostig, Esther & Pitts, Susan M. & Politis, Konstadinos, 2012. "The time to ruin and the number of claims until ruin for phase-type claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 19-25.
    4. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    5. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    6. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    7. Drekic, Steve & Willmot, Gordon E., 2003. "On the Density and Moments of the Time of Ruin with Exponential Claims," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 11-21, May.
    8. Drekic, Steve & Stafford, James E. & Willmot, Gordon E., 2004. "Symbolic calculation of the moments of the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 109-120, February.
    9. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    10. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "On the moments of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 327-350, December.
    11. Kulenko, Natalie & Schmidli, Hanspeter, 2008. "Optimal dividend strategies in a Cramér-Lundberg model with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 270-278, October.
    12. Pitts, Susan M. & Politis, Konstadinos, 2008. "Approximations for the moments of ruin time in the compound Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 668-679, April.
    13. Egidio dos Reis, Alfredo D., 2000. "On the moments of ruin and recovery times," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 331-343, December.
    14. Picard, Philippe & Lefevre, Claude, 1998. "The moments of ruin time in the classical risk model with discrete claim size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 157-172, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    2. Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    3. Lee, Wing Yan & Willmot, Gordon E., 2014. "On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 1-10.
    4. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    5. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    6. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "On the moments of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 327-350, December.
    7. Egidio dos Reis, Alfredo D., 2002. "How many claims does it take to get ruined and recovered?," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 235-248, October.
    8. Jiechang Ruan & Wenguang Yu & Ke Song & Yihan Sun & Yujuan Huang & Xinliang Yu, 2019. "A Note on a Generalized Gerber–Shiu Discounted Penalty Function for a Compound Poisson Risk Model," Mathematics, MDPI, vol. 7(10), pages 1-12, September.
    9. Maite Teresa Marmol Jimenez & M. Mercedes Claramunt Bielsa, 2006. "Time of ruin in a risk model with generalized Erlang (n) interclaim times and a constant dividend barrier," Working Papers in Economics 157, Universitat de Barcelona. Espai de Recerca en Economia.
    10. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    11. Chi, Yichun & Jaimungal, Sebastian & Lin, X. Sheldon, 2010. "An insurance risk model with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 52-66, February.
    12. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    13. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    14. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    15. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    16. Drekic, Steve & Stafford, James E. & Willmot, Gordon E., 2004. "Symbolic calculation of the moments of the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 109-120, February.
    17. Willmot, Gordon E. & Dickson, David C. M., 2003. "The Gerber-Shiu discounted penalty function in the stationary renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 403-411, July.
    18. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    19. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    20. Willmot, Gordon E., 2004. "A note on a class of delayed renewal risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 251-257, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09967-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.