IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v32y2012i2a18608.html
   My bibliography  Save this article

The Finite-Sample Size of the BDS Test for GARCH Standardized Residuals

Author

Listed:
  • Fernandes, Marcelo
  • Preumont, Pierre-Yves

Abstract

This paper uses a multivariate response surface methodology to analyze the size distortion of the BDS test when applied to standardized residuals of rst-order GARCH processes. The results show that the asymptotic standard normal distribution is an unreliable approximation even in large samples. On the other hand, a simple log-transformation of the squared standardized residuals seems to correct most of the size problems. The estimated response surfaces can nonetheless provide not only a measure of the size distortion, but also more adequate critical values for theBDS test in small samples.

Suggested Citation

  • Fernandes, Marcelo & Preumont, Pierre-Yves, 2012. "The Finite-Sample Size of the BDS Test for GARCH Standardized Residuals," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(2), April.
  • Handle: RePEc:sbe:breart:v:32:y:2012:i:2:a:18608
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/18608
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Chappell, David & Padmore, Joanne & Ellis, Catherine, 1996. "A Note on the Distribution of BDS Statistics for a Real Exchange Rate Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 561-565, August.
    3. Brooks, Chris & Heravi, Saeed M, 1999. "The Effect of (Mis-Specified) GARCH Filters on the Finite Sample Distribution of the BDS Test," Computational Economics, Springer;Society for Computational Economics, vol. 13(2), pages 147-162, April.
    4. David Peel & Alan Speight, 1994. "Testing for non-linear dependence in inter-war exchange rates," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 130(2), pages 391-417, June.
    5. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    6. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    7. Abhyankar, A & Copeland, L S & Wong, W, 1995. "Nonlinear Dynamics in Real-Time Equity Market Indices: Evidence from the United Kingdom," Economic Journal, Royal Economic Society, vol. 105(431), pages 864-880, July.
    8. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    9. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976, Elsevier.
    10. Hsieh, David A., 1993. "Implications of Nonlinear Dynamics for Financial Risk Management," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 41-64, March.
    11. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Huang & Han Lin Shang & David Pitt, 2022. "A model sufficiency test using permutation entropy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 1017-1036, August.
    2. Luo, Wenya & Bai, Zhidong & Zheng, Shurong & Hui, Yongchang, 2020. "A modified BDS test," Statistics & Probability Letters, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Pérez-Rodríguez & Julián Andrada-Félix, 2013. "Estimating critical values for testing the i.i.d. in standardized residuals from GARCH models in finite samples," Computational Statistics, Springer, vol. 28(2), pages 701-734, April.
    2. Evzen Kocenda & Lubos Briatka, 2005. "Optimal Range for the iid Test Based on Integration Across the Correlation Integral," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 265-296.
    3. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    4. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9.
    5. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    6. Brooks, Chris & Henry, Olan T., 2000. "Can portmanteau nonlinearity tests serve as general mis-specification tests?: Evidence from symmetric and asymmetric GARCH models," Economics Letters, Elsevier, vol. 67(3), pages 245-251, June.
    7. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    9. Yi-Ting Chen & Chung-Ming Kuan, 2002. "Time irreversibility and EGARCH effects in US stock index returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 565-578.
    10. Meddahi, Nour & Renault, Eric & Werker, Bas, 2006. "GARCH and irregularly spaced data," Economics Letters, Elsevier, vol. 90(2), pages 200-204, February.
    11. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    12. Harris, Richard D. F. & Kucukozmen, C. Coskun, 2001. "Linear and nonlinear dependence in Turkish equity returns and its consequences for financial risk management," European Journal of Operational Research, Elsevier, vol. 134(3), pages 481-492, November.
    13. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    14. K.P. Lim & M.J. Hinich & K.S. Liew, 2003. "GARCH Diagnosis with Portmanteau Bicorrelation Test: An Application on the Malaysia's Stock Market," Finance 0307013, University Library of Munich, Germany.
    15. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility of diffusion processes with high frequency data," Economics Letters, Elsevier, vol. 74(3), pages 371-378, February.
    16. Kian-Ping Lim & Melvin J. Hinich & Venus Khim-Sen Liew, 2005. "Statistical Inadequacy of GARCH Models for Asian Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(3), pages 263-279, December.
    17. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    19. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    20. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:32:y:2012:i:2:a:18608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.