IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i9p155-d1227178.html
   My bibliography  Save this article

Pricing Pandemic Bonds under Hull–White & Stochastic Logistic Growth Model

Author

Listed:
  • Vajira Manathunga

    (Program of Actuarial Science, Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

  • Linmiao Deng

    (Program of Actuarial Science, Department of Mathematical Sciences, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA)

Abstract

Pandemic bonds can be used as an effective tool to mitigate the economic losses that governments face during pandemics and transfer them to the global capital market. Once considered as an “uninsurable” event, pandemic bonds caught the attention of the world with the issuance of pandemic bonds by the World Bank in 2017. Compared to other CAT bonds, pandemic bonds received less attention from actuaries, industry professionals, and academic researchers. Existing research focused mainly on how to bring epidemiological parameters to the pricing mechanism through compartmental models. In this study, we introduce the stochastic logistic growth model-based pandemic bond pricing framework. We demonstrate the proposed model with two numerical examples. First, we calculate what investor is willing to pay for the World Bank issued pandemic bond while accounting for possible future pandemic, but require to have the same yield to maturity when no pandemic is there, and without using COVID-19 data. In the second example, we calculate the fair value of a pandemic bond with characteristics similar to the World Bank issued pandemic bond, but using COVID-19 data. The model can be used as an alternative to epidemic compartmental model-based pandemic bond pricing mechanisms.

Suggested Citation

  • Vajira Manathunga & Linmiao Deng, 2023. "Pricing Pandemic Bonds under Hull–White & Stochastic Logistic Growth Model," Risks, MDPI, vol. 11(9), pages 1-28, August.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:9:p:155-:d:1227178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/9/155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/9/155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shao, Jia & Papaioannou, Apostolos D. & Pantelous, Athanasios A., 2017. "Pricing and simulating catastrophe risk bonds in a Markov-dependent environment," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 68-84.
    2. Paolo Bajardi & Chiara Poletto & Jose J Ramasco & Michele Tizzoni & Vittoria Colizza & Alessandro Vespignani, 2011. "Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    3. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu & Rose Irnawaty Ibrahim, 2023. "How to Price Catastrophe Bonds for Sustainable Earthquake Funding? A Systematic Review of the Pricing Framework," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    2. Harsh K. Mistry & Domenico Lombardi, 2023. "A stochastic exposure model for seismic risk assessment and pricing of catastrophe bonds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 803-829, May.
    3. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Binti Abdul Halim, 2022. "Earthquake Catastrophe Bond Pricing Using Extreme Value Theory: A Mini-Review Approach," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    4. Dixon Domfeh & Arpita Chatterjee & Matthew Dixon, 2022. "A Unified Bayesian Framework for Pricing Catastrophe Bond Derivatives," Papers 2205.04520, arXiv.org.
    5. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Abdul Halim, 2023. "Single Earthquake Bond Pricing Framework with Double Trigger Parameters Based on Multi Regional Seismic Information," Mathematics, MDPI, vol. 11(3), pages 1-44, January.
    6. Hakan Yilmazkuday, 2021. "Welfare costs of COVID‐19: Evidence from US counties," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 826-848, September.
    7. Wang, Weihong & Chen, MingMing & Min, Yong & Jin, Xiaogang, 2016. "Structural diversity effects of multilayer networks on the threshold of interacting epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 254-262.
    8. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu & Rose Irnawaty Ibrahim, 2024. "Earthquake Bond Pricing Model Involving the Inconstant Event Intensity and Maximum Strength," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    9. Michele Coscia & Ricardo Hausmann, 2015. "Evidence That Calls-Based and Mobility Networks Are Isomorphic," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    10. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Abdul Halim, 2023. "Catastrophe Bond Diversification Strategy Using Probabilistic–Possibilistic Bijective Transformation and Credibility Measures in Fuzzy Environment," Mathematics, MDPI, vol. 11(16), pages 1-30, August.
    11. Hartwell, Christopher A., 2021. "What Drove the First Response to the COVID-19 Pandemic? The Role of Institutions and Leader Attributes," MPRA Paper 110563, University Library of Munich, Germany.
    12. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    13. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    14. Panayotis Christidis & Aris Christodoulou, 2020. "The Predictive Capacity of Air Travel Patterns during the Global Spread of the COVID-19 Pandemic: Risk, Uncertainty and Randomness," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    15. Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
    16. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    17. Sheng Wei & Lei Wang, 2020. "Examining the population flow network in China and its implications for epidemic control based on Baidu migration data," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-10, December.
    18. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    19. Mattia Mazzoli & Riccardo Gallotti & Filippo Privitera & Pere Colet & José J. Ramasco, 2023. "Spatial immunization to abate disease spreading in transportation hubs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Sukono & Hafizan Juahir & Riza Andrian Ibrahim & Moch Panji Agung Saputra & Yuyun Hidayat & Igif Gimin Prihanto, 2022. "Application of Compound Poisson Process in Pricing Catastrophe Bonds: A Systematic Literature Review," Mathematics, MDPI, vol. 10(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:9:p:155-:d:1227178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.